Regularity of optimal sets for some functional involving eigenvalues of an operator in divergence form
Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1337-1371.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

In this paper we consider minimizers of the functional

min{λ1(Ω)++λk(Ω)+Λ|Ω|,:ΩD open}
where DRd is a bounded open set and where 0<λ1(Ω)λk(Ω) are the first k eigenvalues on Ω of an operator in divergence form with Dirichlet boundary condition and with Hölder continuous coefficients. We prove that the optimal sets Ω have finite perimeter and that their free boundary ΩD is composed of a regular part, which is locally the graph of a C1,α-regular function, and a singular part, which is empty if d<d, discrete if d=d and of Hausdorff dimension at most dd if d>d, for some d{5,6,7}.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.11.002
Classification : 49Q10, 35R35, 47A75
Mots-clés : Shape optimization, Eigenvalues, Operator in divergence form, Optimality conditions, Regularity of the free boundaries, Viscosity solutions
@article{AIHPC_2021__38_5_1337_0,
     author = {Trey, Baptiste},
     title = {Regularity of optimal sets for some functional involving eigenvalues of an operator in divergence form},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1337--1371},
     publisher = {Elsevier},
     volume = {38},
     number = {5},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.11.002},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.002/}
}
TY  - JOUR
AU  - Trey, Baptiste
TI  - Regularity of optimal sets for some functional involving eigenvalues of an operator in divergence form
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1337
EP  - 1371
VL  - 38
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.002/
DO  - 10.1016/j.anihpc.2020.11.002
LA  - en
ID  - AIHPC_2021__38_5_1337_0
ER  - 
%0 Journal Article
%A Trey, Baptiste
%T Regularity of optimal sets for some functional involving eigenvalues of an operator in divergence form
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1337-1371
%V 38
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.002/
%R 10.1016/j.anihpc.2020.11.002
%G en
%F AIHPC_2021__38_5_1337_0
Trey, Baptiste. Regularity of optimal sets for some functional involving eigenvalues of an operator in divergence form. Annales de l'I.H.P. Analyse non linéaire, septembre – octobre 2021, Tome 38 (2021) no. 5, pp. 1337-1371. doi : 10.1016/j.anihpc.2020.11.002. http://www.numdam.org/articles/10.1016/j.anihpc.2020.11.002/

[1] Alt, H.W.; Caffarelli, L.A. Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., Volume 325 (1981), pp. 105-144 | Zbl

[2] Athanasopoulos, I.; Caffarelli, L.A. A theorem of real analysis and its application to free boundary problems, Commun. Pure Appl. Math., Volume 38 (1985) no. 5, pp. 499-502 | DOI | Zbl

[3] Briançon, T.; Lamboley, J. Regularity of the optimal shape for the first eigenvalue of the Laplacian with volume and inclusion constraints, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009) no. 4, pp. 1149-1163 | DOI | Zbl

[4] Bucur, D. Minimization of the k-th eigenvalue of the Dirichlet Laplacian, Arch. Ration. Mech. Anal., Volume 206 (2012) no. 3, pp. 1073-1083 | DOI | Zbl

[5] Caffarelli, L.A.; Lin, F.H. An optimal partition problem for eigenvalues, J. Sci. Comput., Volume 31 (2007), pp. 5-14 | DOI | Zbl

[6] Conti, M.; Terracini, S.; Verzini, G. An optimal partition problem related to nonlinear eigenvalues, J. Funct. Anal., Volume 198 (2003) no. 1, pp. 160-196 | DOI | Zbl

[7] David, G.; Engelstein, M.; Smit Vega Garcia, M.; Toro, T. Regularity for almost-minimizers of variable coefficient Bernoulli-type functionals, 2019 (arXiv preprint) | arXiv

[8] David, G.; Toro, T. Regularity of almost minimizers with free boundary, Calc. Var. Partial Differ. Equ., Volume 54 (2015) no. 1, pp. 455-524 | DOI

[9] De Silva, D. Free boundary regularity for a problem with right hand side, Interfaces Free Bound., Volume 13 (2011) no. 2, pp. 223-238 | DOI | Zbl

[10] De Silva, D.; Jerison, D. A singular energy minimizing free boundary, J. Reine Angew. Math., Volume 635 (2009), pp. 1-21 | DOI | Zbl

[11] De Silva, D.; Savin, O. A note on higher regularity boundary Harnack inequality, 2014 (arXiv preprint) | arXiv

[12] De Silva, D.; Savin, O. A short proof of boundary Harnack inequality, 2019 (arXiv preprint) | arXiv

[13] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, Springer, Berlin, 2001 (reprint of the 1998 ed.) | DOI | Zbl

[14] Giusti, E. Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, vol. 80, Birkhäuser, Boston-Basel-Stuttgart, 1984 XII, 240 pp., DM 96.00 (1984) | Zbl

[15] Jerison, D.; Savin, O. Some remarks on stability of cones for the one-phase free boundary problem, Geom. Funct. Anal., Volume 25 (2015) no. 4, pp. 1240-1257 | DOI

[16] Jerison, D.S.; Kenig, C.E. Boundary behavior of harmonic functions in non-tangentially accessible domains, Adv. Math., Volume 46 (1982) no. 1, pp. 80-147 | DOI | Zbl

[17] Kenig, C.E. Harmonic Analysis Techniques for Second Order Elliptic Boundary Value Problems, vol. 83, American Mathematical Soc., 1994 | Zbl

[18] Kenig, C.E.; Toro, T. Harmonic measure on locally flat domains, Duke Math. J., Volume 87 (1997) no. 3, pp. 509-551 | DOI | Zbl

[19] Kinderlehrer, D.; Nirenberg, L. Regularity in free boundary problems, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 4 (1977), pp. 373-391 | Numdam | Zbl

[20] Kriventsov, D.; Lin, F. Regularity for shape optimizers: the nondegenerate case, Commun. Pure Appl. Math., Volume 71 (2018) no. 8, pp. 1535-1596 | DOI

[21] Kriventsov, D.; Lin, F. Regularity for shape optimizers: the degenerate case, Commun. Pure Appl. Math., Volume 72 (2019) no. 8, pp. 1678-1721 | DOI

[22] Lamboley, J.; Sicbaldi, P. Existence and regularity of Faber Krahn minimizers in a Riemannian manifold, 2019 (arXiv preprint) | arXiv

[23] Maggi, F. Sets of Finite Perimeter and Geometric Variational Problems. An Introduction to Geometric Measure Theory, vol. 135, Cambridge University Press, Cambridge, 2012 | Zbl

[24] Mazzoleni, D.; Terracini, S.; Velichkov, B. Regularity of the optimal sets for some spectral functionals, Geom. Funct. Anal., Volume 27 (2017) no. 2, pp. 373-426 | DOI

[25] Mazzoleni, D.; Terracini, S.; Velichkov, B. Regularity of the free boundary for the vectorial Bernoulli problem, 2018 (arXiv preprint) | arXiv

[26] Ramos, M.; Tavares, H.; Terracini, S. Extremality conditions and regularity of solutions to optimal partition problems involving Laplacian eigenvalues, Arch. Ration. Mech. Anal., Volume 220 (2016) no. 1, pp. 363-443 | DOI

[27] Russ, E.; Trey, B.; Velichkov, B. Existence and regularity of optimal shapes for elliptic operators with drift, Calc. Var. Partial Differ. Equ., Volume 58 (2019) no. 6, p. 199 | DOI

[28] Spolaor, L.; Trey, B.; Velichkov, B. Free boundary regularity for a multiphase shape optimization problem, Commun. Partial Differ. Equ. (2019), pp. 1-32

[29] Trey, B. Lipschitz continuity of the eigenfunctions on optimal sets for functionals with variable coefficients, 2019 (arXiv preprint) | arXiv

[30] B. Velichkov, Regularity of the one-phase free boundaries, 2019.

[31] Weiss, G.S. Partial regularity for a minimum problem with free boundary, J. Geom. Anal., Volume 9 (1999) no. 2, pp. 317-326 | DOI | Zbl

Cité par Sources :