Point interactions for 3D sub-Laplacians
Annales de l'I.H.P. Analyse non linéaire, juillet – août 2021, Tome 38 (2021) no. 4, pp. 1095-1113.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

In this paper we show that, for a sub-Laplacian Δ on a 3-dimensional manifold M, no point interaction centered at a point q0M exists. When M is complete w.r.t. the associated sub-Riemannian structure, this means that Δ acting on C0(M{q0}) is essentially self-adjoint in L2(M). A particular example is the standard sub-Laplacian on the Heisenberg group. This is in stark contrast with what happens in a Riemannian manifold N, whose associated Laplace-Beltrami operator acting on C0(N{q0}) is never essentially self-adjoint in L2(N), if dimN3. We then apply this result to the Schrödinger evolution of a thin molecule, i.e., with a vanishing moment of inertia, rotating around its center of mass.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.10.007
Mots-clés : Essential self-adjointness, Heisenberg group, Sub-Laplacian, Point interactions, Sub-Riemannian geometry, Rotation of molecules
Adami, Riccardo 1 ; Boscain, Ugo 2 ; Franceschi, Valentina 3 ; Prandi, Dario 4

1 a Politecnico di Torino, Dipartimento di Scienze Matematiche “G.L. Lagrange”, Corso Duca degli Abruzzi, 24, 10129, Torino, Italy
2 b CNRS, Sorbonne Université, Inria, Université de Paris, Laboratoire Jacques-Louis Lions, Paris, France
3 c Dipartimento di Matematica Tullio Levi-Civita, Università degli Studi di Padova, via Trieste 63, 35131 Padova, Italy
4 d Université Paris-Saclay, CNRS, CentraleSupélec, Laboratoire des Signaux et Systèmes, 91190, Gif-sur-Yvette, France
@article{AIHPC_2021__38_4_1095_0,
     author = {Adami, Riccardo and Boscain, Ugo and Franceschi, Valentina and Prandi, Dario},
     title = {Point interactions for {3D} {sub-Laplacians}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1095--1113},
     publisher = {Elsevier},
     volume = {38},
     number = {4},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.10.007},
     mrnumber = {4266236},
     zbl = {1468.35181},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.10.007/}
}
TY  - JOUR
AU  - Adami, Riccardo
AU  - Boscain, Ugo
AU  - Franceschi, Valentina
AU  - Prandi, Dario
TI  - Point interactions for 3D sub-Laplacians
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1095
EP  - 1113
VL  - 38
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.10.007/
DO  - 10.1016/j.anihpc.2020.10.007
LA  - en
ID  - AIHPC_2021__38_4_1095_0
ER  - 
%0 Journal Article
%A Adami, Riccardo
%A Boscain, Ugo
%A Franceschi, Valentina
%A Prandi, Dario
%T Point interactions for 3D sub-Laplacians
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1095-1113
%V 38
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.10.007/
%R 10.1016/j.anihpc.2020.10.007
%G en
%F AIHPC_2021__38_4_1095_0
Adami, Riccardo; Boscain, Ugo; Franceschi, Valentina; Prandi, Dario. Point interactions for 3D sub-Laplacians. Annales de l'I.H.P. Analyse non linéaire, juillet – août 2021, Tome 38 (2021) no. 4, pp. 1095-1113. doi : 10.1016/j.anihpc.2020.10.007. http://www.numdam.org/articles/10.1016/j.anihpc.2020.10.007/

[1] Adami, R.; Teta, A. A class of nonlinear Schrödinger equations with concentrated nonlinearity, J. Funct. Anal., Volume 180 (2001) no. 1, pp. 148-175 | DOI | MR | Zbl

[2] Agrachev, A.; Barilari, D.; Boscain, U. A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge Studies in Advanced Mathematics, vol. 181, Cambridge University Press, Cambridge, 2020 (From the Hamiltonian viewpoint, with an appendix by Igor Zelenko) | MR | Zbl

[3] Agrachev, A.; Boscain, U.; Gauthier, J.-P.; Rossi, F. The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups, J. Funct. Anal., Volume 256 ( Apr. 2009 ) no. 8, pp. 2621-2655 | DOI | MR | Zbl

[4] Agrachev, A.; Boscain, U.; Sigalotti, M. A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds, Discrete Contin. Dyn. Syst., Volume 20 (2008) no. 4, pp. 801-822 | DOI | MR | Zbl

[5] Albeverio, S.; Gesztesy, F.; Høegh-Krohn, R.; Holden, H. Solvable Models in Quantum Mechanics, AMS Chelsea Publishing, Providence, RI, 2005 (With an appendix by Pavel Exner) | MR | Zbl

[6] Albeverio, S.; Kurasov, P. Singular Perturbations of Differential Operators, London Mathematical Society Lecture Note Series, vol. 271, Cambridge University Press, Cambridge, 2000 (Solvable Schrödinger type operators) | MR | Zbl

[7] Bahouri, H.; Chemin, J.-Y.; Danchin, R. Tempered distributions and Fourier transform on the Heisenberg group, Ann. Henri Lebesgue, Volume 1 (2018), pp. 1-46 | DOI | MR | Zbl

[8] Bahouri, H.; Chemin, J.-Y.; Danchin, R. A frequency space for the Heisenberg group, Ann. Inst. Fourier (Grenoble), Volume 69 (2019) no. 1, pp. 365-407 | DOI | MR | Zbl

[9] Bramanti, M. An Invitation to Hypoelliptic Operators and Hörmander's Vector Fields, SpringerBriefs in Mathematics, 2014 | DOI | MR | Zbl

[10] Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011 | DOI | MR | Zbl

[11] Capogna, L.; Danielli, D.; Pauls, S.D.; Tyson, J.T. An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Progress in Mathematics, vol. 259, Birkhäuser Verlag, Basel, 2007 | MR | Zbl

[12] Colin de Verdière, Y. Pseudo-laplaciens. I, Ann. Inst. Fourier, Volume 32 (1982) no. 3, pp. 275-286 | DOI | Numdam | MR | Zbl

[13] Fermi, E. Sul moto dei neutroni nelle sostanze idrogenate, Ric. Sci., Volume 7 (1936) no. 2, pp. 13-52 | Zbl

[14] Fischer, V.; Ruzhansky, M. Quantization on Nilpotent Lie Groups, Progress in Mathematics, vol. 314, Birkhäuser/Springer, Cham, 2016 | MR | Zbl

[15] Folland, G.B. A fundamental solution for a subelliptic operator, Bull. Am. Math. Soc., Volume 79 (1973) no. 2, pp. 373-376 | DOI | MR | Zbl

[16] Franceschi, V.; Prandi, D. Hardy-type inequalities for the Carnot-Carathéodory distance in the Heisenberg group, J. Geom. Anal. (2020) | MR | Zbl

[17] Franceschi, V.; Prandi, D.; Rizzi, L. On the essential self-adjointness of singular sub-Laplacians, Potential Anal., Volume 53 (2020) no. 1, pp. 89-112 | DOI | MR | Zbl

[18] Gaffney, M.P. A special Stokes' theorem for complete Riemannian manifolds, Ann. Math., Volume 60 (1954) no. 1, pp. 140-145 | DOI | MR | Zbl

[19] Garofalo, N.; Lanconelli, E. Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier, Volume 40 (1990) no. 2, pp. 313-356 | DOI | Numdam | MR | Zbl

[20] Geller, D. Fourier analysis on the Heisenberg group. I. Schwartz space, J. Funct. Anal., Volume 36 (1980) no. 2, pp. 205-254 | DOI | MR | Zbl

[21] Geller, D.N. Fourier Analysis on the Heisenberg Group, ProQuest LLC, Ann Arbor, MI, 1977 Thesis (Ph.D.)–Princeton University | MR

[22] Hörmander, L. Hypoelliptic second order differential equations, Acta Math., Volume 119 ( Dec. 1967 ) no. 1, pp. 147-171 | MR | Zbl

[23] Lehrbäck, J. Hardy inequalities and Assouad dimensions, J. Anal. Math., Volume 131 (2017) no. 1, pp. 367-398 | DOI | MR | Zbl

[24] Mitchell, J. On Carnot-Carathéodory metrics, J. Differ. Geom., Volume 21 (1985), pp. 35-45 | DOI | MR | Zbl

[25] Montgomery, R. A Tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical Surveys and Monographs, vol. 91, American Mathematical Society, Providence, RI, 2002 | MR | Zbl

[26] Nenciu, G.; Nenciu, I. On confining potentials and essential self-adjointness for Schrödinger operators on bounded domains in Rn , Ann. Henri Poincaré, Volume 10 (2009) no. 2, pp. 377-394 | DOI | MR | Zbl

[27] Pavlov, B. Boundary conditions on thin manifolds and the semiboundedness of the three-particle Schrödinger operator with pointwise potential, Math. USSR Sb., Volume 64 (1989) no. 1, pp. 161-175 | DOI | MR | Zbl

[28] Prandi, D.; Rizzi, L.; Seri, M. Quantum confinement on non-complete Riemannian manifolds, J. Spectr. Theory, Volume 8 (2018) no. 4, pp. 1221-1280 | DOI | MR | Zbl

[29] Reed, M.; Simon, B. Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975 | MR | Zbl

[30] Reed, M.; Simon, B. Methods of Modern Mathematical Physics. I – Functional Analysis , Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980 | MR | Zbl

[31] Rothschild, L.; Stein, E. Hypoelliptic differential operators and nilpotent groups, Acta Math., Volume 137 (1976) no. I, pp. 247-320 | DOI | MR | Zbl

[32] Stein, E.M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993 (With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III) | MR | Zbl

[33] Strichartz, R. Sub-Riemannian geometry, J. Differ. Geom., Volume 24 (1986) no. 2, pp. 221-263 | DOI | MR | Zbl

[34] Strichartz, R.S. Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal., Volume 52 (1983) no. 1, pp. 48-79 | DOI | MR | Zbl

[35] Yang, Q.-H. Hardy type inequalities related to Carnot-Carathéodory distance on the Heisenberg group, Proc. Am. Math. Soc., Volume 141 (2013) no. 1, pp. 351-362 | DOI | MR | Zbl

[36] Zhitomirskii, M. Singularities and normal forms of smooth distributions, Banach Cent. Publ., Volume 32 (1995), pp. 395-409 | DOI | MR | Zbl

Cité par Sources :