In this paper we show that, for a sub-Laplacian Δ on a 3-dimensional manifold M, no point interaction centered at a point exists. When M is complete w.r.t. the associated sub-Riemannian structure, this means that Δ acting on is essentially self-adjoint in . A particular example is the standard sub-Laplacian on the Heisenberg group. This is in stark contrast with what happens in a Riemannian manifold N, whose associated Laplace-Beltrami operator acting on is never essentially self-adjoint in , if . We then apply this result to the Schrödinger evolution of a thin molecule, i.e., with a vanishing moment of inertia, rotating around its center of mass.
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.10.007
@article{AIHPC_2021__38_4_1095_0, author = {Adami, Riccardo and Boscain, Ugo and Franceschi, Valentina and Prandi, Dario}, title = {Point interactions for {3D} {sub-Laplacians}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1095--1113}, publisher = {Elsevier}, volume = {38}, number = {4}, year = {2021}, doi = {10.1016/j.anihpc.2020.10.007}, mrnumber = {4266236}, zbl = {1468.35181}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.10.007/} }
TY - JOUR AU - Adami, Riccardo AU - Boscain, Ugo AU - Franceschi, Valentina AU - Prandi, Dario TI - Point interactions for 3D sub-Laplacians JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 1095 EP - 1113 VL - 38 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2020.10.007/ DO - 10.1016/j.anihpc.2020.10.007 LA - en ID - AIHPC_2021__38_4_1095_0 ER -
%0 Journal Article %A Adami, Riccardo %A Boscain, Ugo %A Franceschi, Valentina %A Prandi, Dario %T Point interactions for 3D sub-Laplacians %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 1095-1113 %V 38 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2020.10.007/ %R 10.1016/j.anihpc.2020.10.007 %G en %F AIHPC_2021__38_4_1095_0
Adami, Riccardo; Boscain, Ugo; Franceschi, Valentina; Prandi, Dario. Point interactions for 3D sub-Laplacians. Annales de l'I.H.P. Analyse non linéaire, juillet – août 2021, Tome 38 (2021) no. 4, pp. 1095-1113. doi : 10.1016/j.anihpc.2020.10.007. http://www.numdam.org/articles/10.1016/j.anihpc.2020.10.007/
[1] A class of nonlinear Schrödinger equations with concentrated nonlinearity, J. Funct. Anal., Volume 180 (2001) no. 1, pp. 148-175 | DOI | MR | Zbl
[2] A Comprehensive Introduction to Sub-Riemannian Geometry, Cambridge Studies in Advanced Mathematics, vol. 181, Cambridge University Press, Cambridge, 2020 (From the Hamiltonian viewpoint, with an appendix by Igor Zelenko) | MR | Zbl
[3] The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups, J. Funct. Anal., Volume 256 ( Apr. 2009 ) no. 8, pp. 2621-2655 | DOI | MR | Zbl
[4] A Gauss-Bonnet-like formula on two-dimensional almost-Riemannian manifolds, Discrete Contin. Dyn. Syst., Volume 20 (2008) no. 4, pp. 801-822 | DOI | MR | Zbl
[5] Solvable Models in Quantum Mechanics, AMS Chelsea Publishing, Providence, RI, 2005 (With an appendix by Pavel Exner) | MR | Zbl
[6] Singular Perturbations of Differential Operators, London Mathematical Society Lecture Note Series, vol. 271, Cambridge University Press, Cambridge, 2000 (Solvable Schrödinger type operators) | MR | Zbl
[7] Tempered distributions and Fourier transform on the Heisenberg group, Ann. Henri Lebesgue, Volume 1 (2018), pp. 1-46 | DOI | MR | Zbl
[8] A frequency space for the Heisenberg group, Ann. Inst. Fourier (Grenoble), Volume 69 (2019) no. 1, pp. 365-407 | DOI | MR | Zbl
[9] An Invitation to Hypoelliptic Operators and Hörmander's Vector Fields, SpringerBriefs in Mathematics, 2014 | DOI | MR | Zbl
[10] Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011 | DOI | MR | Zbl
[11] An Introduction to the Heisenberg Group and the Sub-Riemannian Isoperimetric Problem, Progress in Mathematics, vol. 259, Birkhäuser Verlag, Basel, 2007 | MR | Zbl
[12] Pseudo-laplaciens. I, Ann. Inst. Fourier, Volume 32 (1982) no. 3, pp. 275-286 | DOI | Numdam | MR | Zbl
[13] Sul moto dei neutroni nelle sostanze idrogenate, Ric. Sci., Volume 7 (1936) no. 2, pp. 13-52 | Zbl
[14] Quantization on Nilpotent Lie Groups, Progress in Mathematics, vol. 314, Birkhäuser/Springer, Cham, 2016 | MR | Zbl
[15] A fundamental solution for a subelliptic operator, Bull. Am. Math. Soc., Volume 79 (1973) no. 2, pp. 373-376 | DOI | MR | Zbl
[16] Hardy-type inequalities for the Carnot-Carathéodory distance in the Heisenberg group, J. Geom. Anal. (2020) | MR | Zbl
[17] On the essential self-adjointness of singular sub-Laplacians, Potential Anal., Volume 53 (2020) no. 1, pp. 89-112 | DOI | MR | Zbl
[18] A special Stokes' theorem for complete Riemannian manifolds, Ann. Math., Volume 60 (1954) no. 1, pp. 140-145 | DOI | MR | Zbl
[19] Frequency functions on the Heisenberg group, the uncertainty principle and unique continuation, Ann. Inst. Fourier, Volume 40 (1990) no. 2, pp. 313-356 | DOI | Numdam | MR | Zbl
[20] Fourier analysis on the Heisenberg group. I. Schwartz space, J. Funct. Anal., Volume 36 (1980) no. 2, pp. 205-254 | DOI | MR | Zbl
[21] Fourier Analysis on the Heisenberg Group, ProQuest LLC, Ann Arbor, MI, 1977 Thesis (Ph.D.)–Princeton University | MR
[22] Hypoelliptic second order differential equations, Acta Math., Volume 119 ( Dec. 1967 ) no. 1, pp. 147-171 | MR | Zbl
[23] Hardy inequalities and Assouad dimensions, J. Anal. Math., Volume 131 (2017) no. 1, pp. 367-398 | DOI | MR | Zbl
[24] On Carnot-Carathéodory metrics, J. Differ. Geom., Volume 21 (1985), pp. 35-45 | DOI | MR | Zbl
[25] A Tour of Subriemannian Geometries, Their Geodesics and Applications, Mathematical Surveys and Monographs, vol. 91, American Mathematical Society, Providence, RI, 2002 | MR | Zbl
[26] On confining potentials and essential self-adjointness for Schrödinger operators on bounded domains in , Ann. Henri Poincaré, Volume 10 (2009) no. 2, pp. 377-394 | DOI | MR | Zbl
[27] Boundary conditions on thin manifolds and the semiboundedness of the three-particle Schrödinger operator with pointwise potential, Math. USSR Sb., Volume 64 (1989) no. 1, pp. 161-175 | DOI | MR | Zbl
[28] Quantum confinement on non-complete Riemannian manifolds, J. Spectr. Theory, Volume 8 (2018) no. 4, pp. 1221-1280 | DOI | MR | Zbl
[29] Methods of Modern Mathematical Physics. II. Fourier Analysis, Self-Adjointness, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975 | MR | Zbl
[30] Methods of Modern Mathematical Physics. I – Functional Analysis , Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York, 1980 | MR | Zbl
[31] Hypoelliptic differential operators and nilpotent groups, Acta Math., Volume 137 (1976) no. I, pp. 247-320 | DOI | MR | Zbl
[32] Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, vol. 43, Princeton University Press, Princeton, NJ, 1993 (With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III) | MR | Zbl
[33] Sub-Riemannian geometry, J. Differ. Geom., Volume 24 (1986) no. 2, pp. 221-263 | DOI | MR | Zbl
[34] Analysis of the Laplacian on the complete Riemannian manifold, J. Funct. Anal., Volume 52 (1983) no. 1, pp. 48-79 | DOI | MR | Zbl
[35] Hardy type inequalities related to Carnot-Carathéodory distance on the Heisenberg group, Proc. Am. Math. Soc., Volume 141 (2013) no. 1, pp. 351-362 | DOI | MR | Zbl
[36] Singularities and normal forms of smooth distributions, Banach Cent. Publ., Volume 32 (1995), pp. 395-409 | DOI | MR | Zbl
Cité par Sources :