We prove propagation of
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.10.006
@article{AIHPC_2021__38_4_1145_0, author = {Velozo Ruiz, Renato}, title = {Gevrey regularity for the {Vlasov-Poisson} system}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1145--1165}, publisher = {Elsevier}, volume = {38}, number = {4}, year = {2021}, doi = {10.1016/j.anihpc.2020.10.006}, mrnumber = {4266238}, zbl = {1472.35082}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2020.10.006/} }
TY - JOUR AU - Velozo Ruiz, Renato TI - Gevrey regularity for the Vlasov-Poisson system JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 1145 EP - 1165 VL - 38 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2020.10.006/ DO - 10.1016/j.anihpc.2020.10.006 LA - en ID - AIHPC_2021__38_4_1145_0 ER -
%0 Journal Article %A Velozo Ruiz, Renato %T Gevrey regularity for the Vlasov-Poisson system %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 1145-1165 %V 38 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2020.10.006/ %R 10.1016/j.anihpc.2020.10.006 %G en %F AIHPC_2021__38_4_1145_0
Velozo Ruiz, Renato. Gevrey regularity for the Vlasov-Poisson system. Annales de l'I.H.P. Analyse non linéaire, juillet – août 2021, Tome 38 (2021) no. 4, pp. 1145-1165. doi : 10.1016/j.anihpc.2020.10.006. https://www.numdam.org/articles/10.1016/j.anihpc.2020.10.006/
[1] Domaine d'analycité des solutions de l'équation d'Euler dans un ouvert de
[2] Global existence for the Vlasov-Poisson equation in 3 space variables with small initial data, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 2 (1985) no. 2, pp. 101-118 | DOI | Numdam | MR | Zbl
[3] Analyticité de la solution de l'équation d'Euler dans un ouvert de
[4] Analyticité des solutions périodiques de l'équation d'Euler en deux dimensions, C. R. Acad. Sci. Paris Sér. A-B, Volume 282 (1976) no. 17, p. A995-A998 (Aiii) | MR | Zbl
[5] Global symmetric solutions of the initial value problem of stellar dynamics, J. Differ. Equ., Volume 25 (1977) no. 3, pp. 342-364 | DOI | MR | Zbl
[6] Global classical solutions of the periodic Vlasov-Poisson system in three dimensions, C. R. Acad. Sci., Sér. 1 Math., Volume 313 (1991) no. 6, pp. 411-416 | MR | Zbl
[7] Remarks on the breakdown of smooth solutions for the 3-D Euler equations, Commun. Math. Phys., Volume 94 (1984) no. 1, pp. 61-66 | DOI | MR | Zbl
[8] Nonlinear echoes and Landau damping with insufficient regularity, 2020 (preprint) | arXiv | MR | Zbl
[9] Landau damping: paraproducts and Gevrey regularity, Ann. PDE, Volume 2 (2016) no. 1 (Art. 4, 71) | MR | Zbl
[10] Analyticité des solutions des équations de Vlassov-Poisson, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 16 (1989) no. 1, pp. 83-104 | Numdam | MR | Zbl
[11] Galactic Dynamics, Princeton Series in Astrophysics, Princeton University Press, 2011 | Zbl
[12] Gevrey class regularity for the solutions of the Navier-Stokes equations, J. Funct. Anal., Volume 87 (1989) no. 2, pp. 359-369 | DOI | MR | Zbl
[13] Sur la nature analytique des solutions des équations aux dérivées partielles. Premier mémoire, Ann. Sci. Éc. Norm. Supér., Volume 3 (1918) no. 35, pp. 129-190 | DOI | JFM | Numdam | MR
[14] Landau damping for analytic and Gevrey, 2020 (preprint) | arXiv | MR | Zbl
[15] On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation. I. General theory, Math. Methods Appl. Sci., Volume 3 (1981) no. 2, pp. 229-248 | DOI | MR | Zbl
[16] On the classical solutions of the initial value problem for the unmodified nonlinear Vlasov equation. II. Special cases, Math. Methods Appl. Sci., Volume 4 (1982) no. 1, pp. 19-32 | DOI | MR | Zbl
[17] On the asymptotic growth of the solutions of the Vlasov-Poisson system, Math. Methods Appl. Sci., Volume 16 (1993) no. 2, pp. 75-86 | DOI | MR | Zbl
[18] Small scale creation for solutions of the incompressible two-dimensional Euler equation, Ann. Math. (2), Volume 180 (2014) no. 3, pp. 1205-1220 | DOI | MR | Zbl
[19] Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids, Commun. Pure Appl. Math., Volume 34 (1981) no. 4, pp. 481-524 | DOI | MR | Zbl
[20] On the radius of analyticity of solutions to the three-dimensional Euler equations, Proc. Am. Math. Soc., Volume 137 (2009) no. 2, pp. 669-677 | DOI | MR | Zbl
[21] On the analyticity and Gevrey-class regularity up to the boundary for the Euler equations, Nonlinearity, Volume 24 (2011) no. 3, pp. 765-796 | DOI | MR | Zbl
[22] On the vibrations of the electronic plasma, Acad. Sci. USSR. J. Phys., Volume 10 (1946), pp. 25-34 | MR | Zbl
[23] Analyticity of solutions for a generalized Euler equation, J. Differ. Equ., Volume 133 (1997) no. 2, pp. 321-339 | DOI | MR | Zbl
[24] Course of Theoretical Physics [“Landau-Lifshits”], Vol. 10, Pergamon International Library of Science, Technology, Engineering and Social Studies, Pergamon Press, Oxford-Elmsford, N.Y., 1981 (Translated from the Russian by J.B. Sykes and R.N. Franklin) | MR
[25] Propagation of moments and regularity for the 3-dimensional Vlasov-Poisson system, Invent. Math., Volume 105 (1991) no. 2, pp. 415-430 | DOI | MR | Zbl
[26] Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge, 2002 | MR | Zbl
[27] On Landau damping, Acta Math., Volume 207 (2011) no. 1, pp. 29-201 | DOI | MR | Zbl
[28] Global classical solutions of the Vlasov-Poisson system in three dimensions for general initial data, J. Differ. Equ., Volume 95 (1992) no. 2, pp. 281-303 | DOI | MR | Zbl
[29] Global existence of smooth solutions to the Vlasov-Poisson system in three dimensions, Commun. Partial Differ. Equ., Volume 16 (1991) no. 8–9, pp. 1313-1335 | DOI | MR | Zbl
[30] Asymptotic growth bounds for the Vlasov-Poisson system, Math. Methods Appl. Sci., Volume 34 (2011) no. 3, pp. 262-277 | DOI | MR | Zbl
Cité par Sources :