Connecting planar linear chains in the spatial N -body problem
Annales de l'I.H.P. Analyse non linéaire, juillet – août 2021, Tome 38 (2021) no. 4, pp. 1115-1144.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

The family of planar linear chains are found as collision-free action minimizers of the spatial N-body problem with equal masses under DN and DN×Z2-symmetry constraint and different types of topological constraints. This generalizes a previous result by the author in [32] for the planar N-body problem. In particular, the monotone constraints required in [32] are proven to be unnecessary, as it will be implied by the action minimization property.

For each type of topological constraints, by considering the corresponding action minimization problem in a coordinate frame rotating around the vertical axis at a constant angular velocity ω, we find an entire family of simple choreographies (seen in the rotating frame), as ω changes from 0 to N. Such a family starts from one planar linear chain and ends at another (seen in the original non-rotating frame). The action minimizer is collision-free, when ω=0 or N, but may contain collision for 0<ω<N. However it can only contain binary collisions and the corresponding collision solutions are C0 block-regularizable.

These families of solutions can be seen as a generalization of Marchal's P12 family for N=3 to arbitrary N3. In particular, for certain types of topological constraints, based on results from [3] and [7], we show that when ω belongs to some sub-intervals of [0,N], the corresponding minimizer must be a rotating regular N-gon contained in the horizontal plane.

DOI : 10.1016/j.anihpc.2020.10.004
Mots-clés : N-body problem, Celestial mechanics, Variational method
Yu, Guowei 1

1 Chern Institute of Mathematics and LPMC, Nankai University, Tianjin, 300071, China
@article{AIHPC_2021__38_4_1115_0,
     author = {Yu, Guowei},
     title = {Connecting planar linear chains in the spatial $N$-body problem},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1115--1144},
     publisher = {Elsevier},
     volume = {38},
     number = {4},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.10.004},
     mrnumber = {4266237},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.10.004/}
}
TY  - JOUR
AU  - Yu, Guowei
TI  - Connecting planar linear chains in the spatial $N$-body problem
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1115
EP  - 1144
VL  - 38
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.10.004/
DO  - 10.1016/j.anihpc.2020.10.004
LA  - en
ID  - AIHPC_2021__38_4_1115_0
ER  - 
%0 Journal Article
%A Yu, Guowei
%T Connecting planar linear chains in the spatial $N$-body problem
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1115-1144
%V 38
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.10.004/
%R 10.1016/j.anihpc.2020.10.004
%G en
%F AIHPC_2021__38_4_1115_0
Yu, Guowei. Connecting planar linear chains in the spatial $N$-body problem. Annales de l'I.H.P. Analyse non linéaire, juillet – août 2021, Tome 38 (2021) no. 4, pp. 1115-1144. doi : 10.1016/j.anihpc.2020.10.004. http://www.numdam.org/articles/10.1016/j.anihpc.2020.10.004/

[1] Arioli, G.; Barutello, V.; Terracini, S. A new branch of mountain pass solutions for the choreographical 3-body problem, Commun. Math. Phys., Volume 268 (2006) no. 2, pp. 439-463 | DOI | MR | Zbl

[2] Barutello, V.; Ferrario, D.L.; Terracini, S. Symmetry groups of the planar three-body problem and action-minimizing trajectories, Arch. Ration. Mech. Anal., Volume 190 (2008) no. 2, pp. 189-226 | DOI | MR | Zbl

[3] Barutello, V.; Terracini, S. Action minimizing orbits in the n -body problem with simple choreography constraint, Nonlinearity, Volume 17 (2004) no. 6, pp. 2015-2039 | DOI | MR | Zbl

[4] Chen, K.-C. Removing collision singularities from action minimizers for the N -body problem with free boundaries, Arch. Ration. Mech. Anal., Volume 181 (2006) no. 2, pp. 311-331 | DOI | MR | Zbl

[5] Chenciner, A. Action minimizing solutions of the Newtonian n -body problem: from homology to symmetry, Beijing, 2002, Higher Ed. Press, Beijing (2002), pp. 279-294 | MR | Zbl

[6] Chenciner, A. Are there perverse choreographies?, New Advances in Celestial Mechanics and Hamiltonian Systems, Kluwer/Plenum, New York, 2004, pp. 63-76 | DOI | MR

[7] Chenciner, A.; Féjoz, J. Unchained polygons and the N -body problem, Regul. Chaotic Dyn., Volume 14 (2009) no. 1, pp. 64-115 | DOI | MR | Zbl

[8] Chenciner, A.; Féjoz, J.; Montgomery, R. Rotating eights. I. The three Γi families, Nonlinearity, Volume 18 (2005) no. 3, pp. 1407-1424 | DOI | MR | Zbl

[9] Chenciner, A.; Gerver, J.; Montgomery, R.; Simó, C. Simple choreographic motions of N bodies: a preliminary study, Geometry, Mechanics, and Dynamics, Springer, New York, 2002, pp. 287-308 | DOI | MR | Zbl

[10] Chenciner, A.; Montgomery, R. A remarkable periodic solution of the three-body problem in the case of equal masses, Ann. Math. (2), Volume 152 (2000) no. 3, pp. 881-901 | DOI | MR | Zbl

[11] ElBialy, M.S. The flow of the N-body problem near a simultaneous-binary-collision singularity and integrals of motion on the collision manifold, Arch. Ration. Mech. Anal., Volume 134 (1996) no. 4, pp. 303-340 | DOI | MR | Zbl

[12] Ferrario, D.L. Symmetry groups and non-planar collisionless action-minimizing solutions of the three-body problem in three-dimensional space, Arch. Ration. Mech. Anal., Volume 179 (2006) no. 3, pp. 389-412 | DOI | MR | Zbl

[13] Ferrario, D.L.; Terracini, S. On the existence of collisionless equivariant minimizers for the classical n-body problem, Invent. Math., Volume 155 (2004) no. 2, pp. 305-362 | DOI | MR | Zbl

[14] Fusco, G.; Gronchi, G.F.; Negrini, P. Platonic polyhedra, topological constraints and periodic solutions of the classical N -body problem, Invent. Math., Volume 185 (2011) no. 2, pp. 283-332 | DOI | MR | Zbl

[15] Gordon, W.B. A minimizing property of Keplerian orbits, Am. J. Math., Volume 99 (1977) no. 5, pp. 961-971 | DOI | MR | Zbl

[16] Kustaanheimo, P.; Stiefel, E. Perturbation theory of Kepler motion based on spinor regularization, J. Reine Angew. Math., Volume 218 (1965), pp. 204-219 | DOI | MR | Zbl

[17] Marchal, C. The family P12 of the three-body problem—the simplest family of periodic orbits, with twelve symmetries per period, Badhofgastein, 2000 (Celest. Mech. Dyn. Astron.), Volume 78 (2001) no. 1–4, pp. 279-298 | MR | Zbl

[18] Martínez, R.; Simó, C. The degree of differentiability of the regularization of simultaneous binary collisions in some N -body problems, Nonlinearity, Volume 13 (2000) no. 6, pp. 2107-2130 | DOI | MR | Zbl

[19] Mateus, E.; Venturelli, A.; Vidal, C. Quasiperiodic collision solutions in the spatial isosceles three-body problem with rotating axis of symmetry, Arch. Ration. Mech. Anal., Volume 210 (2013) no. 1, pp. 165-176 | DOI | MR | Zbl

[20] McGehee, R. Triple collision in the collinear three-body problem, Invent. Math., Volume 27 (1974), pp. 191-227 | DOI | MR | Zbl

[21] Montgomery, R. Figure 8s with three bodies http://people.ucsc.edu/~rmont/Nbdy.html

[22] Montgomery, R. Action spectrum and collisions in the planar three-body problem, Evanston, IL, 1999 (Contemp. Math.), Volume vol. 292, Amer. Math. Soc., Providence, RI (2002), pp. 173-184 | DOI | MR | Zbl

[23] Palais, R.S. The principle of symmetric criticality, Commun. Math. Phys., Volume 69 (1979) no. 1, pp. 19-30 | DOI | MR | Zbl

[24] Shibayama, M. Minimizing periodic orbits with regularizable collisions in the n -body problem, Arch. Ration. Mech. Anal., Volume 199 (2011) no. 3, pp. 821-841 | DOI | MR | Zbl

[25] Shibayama, M. Variational proof of the existence of the super-eight orbit in the four-body problem, Arch. Ration. Mech. Anal., Volume 214 (2014) no. 1, pp. 77-98 | DOI | MR | Zbl

[26] Simó, C. New families of solutions in N -body problems, Barcelona, 2000 (Progr. Math.), Volume vol. 201, Birkhäuser, Basel (2001), pp. 101-115 | DOI | MR | Zbl

[27] Simó, C.; Lacomba, E.A. Regularization of simultaneous binary collisions in the n -body problem, J. Differ. Equ., Volume 98 (1992) no. 2, pp. 241-259 | DOI | MR | Zbl

[28] Venturelli, A. Une caractérisation variationnelle des solutions de Lagrange du problème plan des trois corps, C. R. Acad. Sci., Sér. 1 Math., Volume 332 (2001) no. 7, pp. 641-644 | MR | Zbl

[29] Venturelli, A. Application de la Minimisation de L'action au Problème des N Corps dans le plan et dans L'espace, Université Denis Diderot in Paris, 2002 (PhD thesis)

[30] Yu, G. Spatial double choreographies of the Newtonian 2 n -body problem, Arch. Ration. Mech. Anal., Volume 229 (2018) no. 1, pp. 187-229 | DOI | MR

[31] Yu, G. Shape space figure-8 solution of three body problem with two equal masses, Nonlinearity, Volume 30 (2017) no. 6, pp. 2279-2307 | DOI | MR

[32] Yu, G. Simple choreographies of the planar Newtonian N -body problem, Arch. Ration. Mech. Anal., Volume 225 (2017) no. 2, pp. 901-935 | DOI | MR

Cité par Sources :