A game of alignment: Collective behavior of multi-species
Annales de l'I.H.P. Analyse non linéaire, juillet – août 2021, Tome 38 (2021) no. 4, pp. 1031-1053.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We study the (hydro-)dynamics of multi-species driven by alignment. What distinguishes the different species is the protocol of their interaction with the rest of the crowd: the collective motion is described by different communication kernels, ϕαβ, between the crowds in species α and β. We show that flocking of the overall crowd emerges provided the communication array between species forms a connected graph. In particular, the crowd within each species need not interact with its own kind, i.e., ϕαα=0; different species which are engaged in such ‘game’ of alignment require a connecting path for propagation of information which will lead to the flocking of overall crowd. The same methodology applies to multi-species aggregation dynamics governed by first-order alignment: connectivity implies concentration around an emerging consensus.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.10.003
Classification : 92D25, 35Q35, 76N10
Mots-clés : Collective behavior, Alignment, Aggregation, Multi-species, Connected graph, Weighted Poincaré inequality
He, Siming 1 ; Tadmor, Eitan 2

1 a Department of Mathematics, Duke University, Durham, NC, United States of America
2 b Department of Mathematics, Institute for Physical Sciences & Technology, University of Maryland, College Park, MD, United States of America
@article{AIHPC_2021__38_4_1031_0,
     author = {He, Siming and Tadmor, Eitan},
     title = {A game of alignment: {Collective} behavior of multi-species},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1031--1053},
     publisher = {Elsevier},
     volume = {38},
     number = {4},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.10.003},
     mrnumber = {4266234},
     zbl = {1466.92146},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.10.003/}
}
TY  - JOUR
AU  - He, Siming
AU  - Tadmor, Eitan
TI  - A game of alignment: Collective behavior of multi-species
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1031
EP  - 1053
VL  - 38
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.10.003/
DO  - 10.1016/j.anihpc.2020.10.003
LA  - en
ID  - AIHPC_2021__38_4_1031_0
ER  - 
%0 Journal Article
%A He, Siming
%A Tadmor, Eitan
%T A game of alignment: Collective behavior of multi-species
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1031-1053
%V 38
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.10.003/
%R 10.1016/j.anihpc.2020.10.003
%G en
%F AIHPC_2021__38_4_1031_0
He, Siming; Tadmor, Eitan. A game of alignment: Collective behavior of multi-species. Annales de l'I.H.P. Analyse non linéaire, juillet – août 2021, Tome 38 (2021) no. 4, pp. 1031-1053. doi : 10.1016/j.anihpc.2020.10.003. http://www.numdam.org/articles/10.1016/j.anihpc.2020.10.003/

[1] Bellomo, N.; Degond, P.; Tadmor, E. Active Particles, Volumes 1 & 2: Advances in Theory, Models, and Applications, Birkhäuser, 2017 & 2019 | MR | Zbl

[2] Bertozzi, A.; Carrillo, J.; Laurent, T. Blow-up in multidimensional aggregation equations with mildly singular interaction kernels, Nonlinearity, Volume 22 (2009), pp. 683-710 | DOI | MR | Zbl

[3] Carrillo, J.A.; Choi, Y.-P.; Tadmor, E.; Tan, C. Critical thresholds in 1d Euler equations with nonlocal forces, Math. Models Methods Appl. Sci., Volume 26 (2016) no. 1 | DOI | MR | Zbl

[4] Carrillo, J.A.; DiFrancesco, M.; Figalli, A.; Laurent, T.; Slepcev, D. Global-in-time weak measure solutions and finite-time aggregation for nonlocal interaction equations, Duke Math. J., Volume 156 (2011) no. 2, pp. 229-271 | DOI | MR | Zbl

[5] Cucker, F.; Smale, S. On the mathematics of emergence, Jpn. J. Math., Volume 2 (2007) no. 1, pp. 197-227 | DOI | MR | Zbl

[6] DiFrancesco, M.; Fagioli, S. Measure solutions for non-local interaction pdes with two species, Nonlinearity, Volume 26 (2013) no. 10, p. 2777 | DOI | MR | Zbl

[7] Emako-Kazianou, C.; Liao, J.; Vauchelet, N. Synchronising and non-synchronising dynamics for a two-species aggregation model, Discrete Contin. Dyn. Syst., Ser. B, Volume 22 (2017), pp. 2121-2146 | MR | Zbl

[8] Evers, J.H.M.; Fetecau, R.C.; Kolokolnikov, T. Equilibria for an aggregation model with two species, SIAM J. Appl. Dyn. Syst., Volume 16 (2017) no. 4, pp. 2287-2338 | DOI | MR | Zbl

[9] Fetecau, R.C.; Huang, Y.; Kolokolnikov, T. Swarm dynamics and equilibria for a nonlocal aggregation model, Nonlinearity, Volume 24 (2011) no. 10, p. 2681 | DOI | MR | Zbl

[10] Fiedler, M. A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory, Czechoslov. Math. J., Volume 25 (1975) no. 100, pp. 619-633 | DOI | MR | Zbl

[11] Griffin, C.; Rajtmajer, S.; Squicciarini, A.; Belmonte, A. Consensus and information cascades in game-theoretic imitation dynamics with static and dynamic network topologies, SIAM J. Appl. Dyn. Syst., Volume 18 (2019) no. 2, pp. 597-628 | DOI | MR | Zbl

[12] Grindrod, P. Models of individual aggregation or clustering in single and multi-species communities, J. Math. Biol., Volume 26 (1988), pp. 651-660 | DOI | MR | Zbl

[13] Ha, S.-Y.; Ko, D.; Zhang, Y.; Zhang, X. Emergent dynamics in the interactions of Cucker-Smale ensembles, Kinet. Relat. Models, Volume 10 (2017) no. 3 | MR | Zbl

[14] Ha, S.-Y.; Tadmor, E. From particle to kinetic and hydrodynamic descriptions of flocking, Kinet. Relat. Models, Volume 1 (2008) no. 3, pp. 415-435 | DOI | MR | Zbl

[15] He, S.; Tadmor, E. Global regularity of two-dimensional flocking hydrodynamics, C. R. Math., Ser. I, Volume 355 (2017) | MR | Zbl

[16] Huang, Y.; Bertozzi, A.L. Self-similar blowup solutions to an aggregation equation in Rn , SIAM J. Appl. Math., Volume 70 (2010) no. 7, pp. 2582-2603 | DOI | MR | Zbl

[17] Kang, M.; Figalli, A. A rigorous derivation from the kinetic Cucker-Smale model to the pressureless Euler system with nonlocal alignment, 2017 | arXiv | MR | Zbl

[18] Mohar, B. The Laplacian spectrum of graphs, Graph Theory, Combinatorics, and Applications, vol. 2, 1991, pp. 871-898 | MR | Zbl

[19] Motsch, S.; Tadmor, E. Heterophilious dynamics enhances consensus, SIAM Rev., Volume 56 (2014) no. 4 | DOI | MR | Zbl

[20] Poupaud, F. Diagonal defect measures, adhesion dynamics and Euler equation, Methods Appl. Anal., Volume 9 (2002) no. 4, pp. 533-562 | DOI | MR | Zbl

[21] Shvydkoy, R.; Tadmor, E. Eulerian dynamics with a commutator forcing, Trans. Math. Appl., Volume 1 (2017) no. 1 | MR | Zbl

[22] Tadmor, E.; Tan, C. Critical thresholds in flocking hydrodynamics with non-local alignment, Philos. Trans. - Royal Soc., Math. Phys. Eng. Sci., Volume 372 (2014) | MR | Zbl

Cité par Sources :