Entropy theory for sectional hyperbolic flows
Annales de l'I.H.P. Analyse non linéaire, juillet – août 2021, Tome 38 (2021) no. 4, pp. 1001-1030.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We use entropy theory as a new tool to study sectional hyperbolic flows in any dimension. We show that for C1 flows, every sectional hyperbolic set Λ is entropy expansive, and the topological entropy varies continuously with the flow. Furthermore, if Λ is Lyapunov stable, then it has positive entropy; in addition, if Λ is a chain recurrent class, then it contains a periodic orbit. As a corollary, we prove that for C1 generic flows, every Lorenz-like class is an attractor.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.10.001
Mots-clés : Entropy, Entropy expansive, Lorenz like attractors, Sectional hyperbolic flows
José Pacifico, Maria 1 ; Yang, Fan 2 ; Yang, Jiagang 3, 4

1 a Instituto de Matemática, Universidade Federal do Rio de Janeiro, C. P. 68.530, CEP 21.945-970, Rio de Janeiro, RJ, Brazil
2 b Department of Mathematics, University of Oklahoma, Norman, OK, USA
3 c Department of Mathematics, Southern University of Science and Technology of China, Guangdong, China
4 d Departamento de Geometria, Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, Brazil
@article{AIHPC_2021__38_4_1001_0,
     author = {Jos\'e Pacifico, Maria and Yang, Fan and Yang, Jiagang},
     title = {Entropy theory for sectional hyperbolic flows},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1001--1030},
     publisher = {Elsevier},
     volume = {38},
     number = {4},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.10.001},
     mrnumber = {4266233},
     zbl = {1478.37031},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.10.001/}
}
TY  - JOUR
AU  - José Pacifico, Maria
AU  - Yang, Fan
AU  - Yang, Jiagang
TI  - Entropy theory for sectional hyperbolic flows
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1001
EP  - 1030
VL  - 38
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.10.001/
DO  - 10.1016/j.anihpc.2020.10.001
LA  - en
ID  - AIHPC_2021__38_4_1001_0
ER  - 
%0 Journal Article
%A José Pacifico, Maria
%A Yang, Fan
%A Yang, Jiagang
%T Entropy theory for sectional hyperbolic flows
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1001-1030
%V 38
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.10.001/
%R 10.1016/j.anihpc.2020.10.001
%G en
%F AIHPC_2021__38_4_1001_0
José Pacifico, Maria; Yang, Fan; Yang, Jiagang. Entropy theory for sectional hyperbolic flows. Annales de l'I.H.P. Analyse non linéaire, juillet – août 2021, Tome 38 (2021) no. 4, pp. 1001-1030. doi : 10.1016/j.anihpc.2020.10.001. http://www.numdam.org/articles/10.1016/j.anihpc.2020.10.001/

[1] Afraimovich, V.S.; Bykov, V.V.; Shil'nikov, L.P. On the appearance and structure of the Lorenz attractor, Dokl. Acad. Sci. USSR, Volume 234 (1977), pp. 336-339 | MR | Zbl

[2] Araújo, V.; Pacifico, M.J. Three-Dimensional Flows, Ergebnisse der Mathematik und Ihrer Grenzgebiete. 3. Folge, Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics, vol. 53, Springer, Heidelberg, 2010 (With a foreword by Marcelo Viana) | MR | Zbl

[3] Araújo, V.; Pacifico, M.J.; Pujals, E.R.; Viana, M. Singular-hyperbolic attractors are chaotic, Trans. Am. Math. Soc., Volume 361 (2009), pp. 2431-2485 | DOI | MR | Zbl

[4] Bautista, S.; Morales, C.A. Recent progress on sectional-hyperbolic systems, Dyn. Syst., Volume 30 (2015) no. 4, pp. 369-382 | DOI | MR | Zbl

[5] Bonatti, C.; Crovisier, S. Recurrence et généricité, Invent. Math., Volume 158 (2004), pp. 33-104 | DOI | MR | Zbl

[6] Bonatti, C.; da Luz, A. Star flows and multisingular hyperbolicity | arXiv | DOI | Zbl

[7] Bonatti, C.; Diaz, L.; Viana, M. Dynamics beyond uniform hyperbolicity, Mathematical Physics, III, Encyclopaedia of Mathematical Sciences, vol. 102, Springer-Verlag, Berlin, 2005 | MR | Zbl

[8] Bowen, R. Entropy expansive maps, Trans. Am. Math. Soc., Volume 164 (1972), pp. 323-331 | DOI | MR | Zbl

[9] Burns, K.; Wilkinson, A. On the ergodicity of partially hyperbolic systems, Ann. Math., Volume 171 (2010), pp. 451-489 | DOI | MR | Zbl

[10] Downarowicz, T.; Newhouse, S. Symbolic extensions and smooth dynamical systems, Invent. Math., Volume 160 (2005), pp. 453-499 | DOI | MR | Zbl

[11] Gan, S. A generalized shadowing lemma, Discrete Contin. Dyn. Syst., Volume 8 (2002), pp. 627-632 | DOI | MR | Zbl

[12] Gan, S.; Yang, D. Morse-Smale systems and horseshoes for three dimensional singular flows, Ann. Sci. Éc. Norm. Supér., Volume 51 (2018), pp. 39-112 | DOI | MR | Zbl

[13] Gan, S.; Wen, L. Nonsingular star flows satisfy Axiom A and the no-cycle condition, Invent. Math., Volume 164 (2006), pp. 279-315 | DOI | MR | Zbl

[14] Guckenheimer, J., Springer Verlag (1976), pp. 368-381

[15] Guckenheimer, J.; Williams, R.F. Structural stability of Lorenz attractors, Publ. Math. IHES, Volume 50 (1979), pp. 59-72 | DOI | Numdam | MR | Zbl

[16] Katok, A. Lyapunov exponents, entropy and periodic points of diffeomorphisms, Publ. Math. IHES, Volume 51 (1980), pp. 137-173 | DOI | Numdam | MR | Zbl

[17] Li, M.; Gan, S.; Wen, L. Robustly transitive singular sets via approach of extended linear Poincaré flow, Discrete Contin. Dyn. Syst., Volume 13 (2005), pp. 239-269 | DOI | MR | Zbl

[18] Li, M.; Shi, Y.; Wang, S.; Wang, X. Measures of intermediate entropies for star vector fields | arXiv | Zbl

[19] Liao, G.; Viana, M.; Yang, J. The entropy conjecture for diffeomorphisms away from tangencies, J. Eur. Math. Soc., Volume 15 (2013), pp. 2043-2060 | DOI | MR | Zbl

[20] Liao, S.T. On (η,d)-contractible orbits of vector fields, Syst. Sci. Math. Sci., Volume 2 (1989), pp. 193-227 | MR | Zbl

[21] Liao, S.T. The Qualitative Theory of Differential Dynamical Systems, Science Press, 1996 | MR | Zbl

[22] Lorenz, E.N. Deterministic nonperiodic flow, J. Atmos. Sci., Volume 20 (1963), pp. 130-141 | DOI | MR | Zbl

[23] Luzzatto, S.; Sánchez-Salas, F.J. Uniform hyperbolic approximations of measures with non-zero Lyapunov exponents, Proc. Am. Math. Soc., Volume 141 (2013) no. 9, pp. 3157-3169 | DOI | MR | Zbl

[24] Metzger, R.; Morales, C.A. Sectional-hyperbolic systems, Ergod. Theory Dyn. Syst., Volume 28 (2008), pp. 1587-1597 | DOI | MR | Zbl

[25] Morales, C.A.; Pacifico, M.J.; Pujals, E.R. Singular hyperbolic systems, Proc. Am. Math. Soc., Volume 127 (1999), pp. 3393-3401 | DOI | MR | Zbl

[26] Morales, C.A.; Pacifico, M.J.; Pujals, E.R. Robust transitive singular sets for 3−flows are partially hyperbolic attractors or repellers, Ann. Math., Volume 160 (2004), pp. 375-432 | DOI | MR | Zbl

[27] Morales, C.A. Strong stable manifolds for sectional-hyperbolic sets, Discrete Contin. Dyn. Syst., Volume 17 (2007) no. 3, pp. 553-560 | DOI | MR | Zbl

[28] Newhouse, S. Continuity properties of entropy, Ann. Math., Volume 129 (1990), pp. 215-235 | DOI | MR | Zbl

[29] Shi, Y.; Gan, S.; Wen, L. On the singular hyperbolicity of star flows, J. Mod. Dyn., Volume 8 (2014), pp. 191-219 | DOI | MR | Zbl

[30] Tucker, W. The Lorenz attractor exists, C. R. Acad. Sci. Paris, Ser. I Math., Volume 328 (1999), pp. 1197-1202 | DOI | MR | Zbl

[31] Tucker, W. A rigorous ODE solver and Smale's 14th problem, Found. Comput. Math., Volume 2 (2002), pp. 53-117 | DOI | MR | Zbl

Cité par Sources :

M.J.P. and J.Y. are partially supported by Grant Produtividade em Pesquisa ( CNPq ), Grant Cientista do Nosso Estado ( FAPERJ ), PROEX-CAPES . F.Y. would like to thank the hospitality of Southern University of Science and Technology of China (SUSTC), where part of this work is done.