We analyze the global nonlinear stability of FLRW (Friedmann-Lemaître-Robertson-Walker) spacetimes in the presence of an irrotational perfect fluid. We assume that the fluid is governed by the so-called (generalized) Chaplygin equation of state relating the pressure to the mass-energy density, in which and are constants. We express the Einstein equations in wave gauge as a system of coupled nonlinear wave equations and, after performing a conformal transformation, we analyze the global behavior of solutions toward the future. Under small perturbations, the -spacetime metric, the mass-energy density, and the velocity vector describing the geometry and fluid unknowns remain globally close to a reference FLRW solution. Our analysis provides also the precise asymptotic behavior of the perturbed solutions toward the future.
@article{AIHPC_2021__38_3_787_0, author = {LeFloch, Philippe G. and Wei, Changhua}, title = {Nonlinear stability of self-gravitating irrotational {Chaplygin} fluids in a {FLRW} geometry}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {787--814}, publisher = {Elsevier}, volume = {38}, number = {3}, year = {2021}, doi = {10.1016/j.anihpc.2020.09.005}, mrnumber = {4227052}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.09.005/} }
TY - JOUR AU - LeFloch, Philippe G. AU - Wei, Changhua TI - Nonlinear stability of self-gravitating irrotational Chaplygin fluids in a FLRW geometry JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 787 EP - 814 VL - 38 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2020.09.005/ DO - 10.1016/j.anihpc.2020.09.005 LA - en ID - AIHPC_2021__38_3_787_0 ER -
%0 Journal Article %A LeFloch, Philippe G. %A Wei, Changhua %T Nonlinear stability of self-gravitating irrotational Chaplygin fluids in a FLRW geometry %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 787-814 %V 38 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2020.09.005/ %R 10.1016/j.anihpc.2020.09.005 %G en %F AIHPC_2021__38_3_787_0
LeFloch, Philippe G.; Wei, Changhua. Nonlinear stability of self-gravitating irrotational Chaplygin fluids in a FLRW geometry. Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 787-814. doi : 10.1016/j.anihpc.2020.09.005. http://www.numdam.org/articles/10.1016/j.anihpc.2020.09.005/
[1] Modified Chaplygin gas cosmology, Adv. High Energy Phys. (2012) | MR | Zbl
[2] Generalized Chaplygin gas model: dark energy-dark matter unification and CMBR constraints, Gen. Relativ. Gravit., Volume 35 (2003), pp. 2063-2069 | DOI | MR | Zbl
[3] Role of modified Chaplygin gas in accelerated universe, Class. Quantum Gravity, Volume 21 (2004), pp. 5609-5617 | DOI | MR | Zbl
[4] On the existence of -geodesically complete or future complete solutions of Einstein field equations with smooth asymptotic structure, Commun. Math. Phys., Volume 107 (1986), pp. 587-609 | DOI | MR | Zbl
[5] On the global existence and asymptotic behavior of solutions to the Einstein-Maxwell-Yang-Mills equations, J. Differ. Geom., Volume 34 (1991), pp. 275-345 | DOI | MR | Zbl
[6] The Chaplygin gas as a model for dark energy (Preprint unpublished) | arXiv | DOI | Zbl
[7] The global future stability of the FLRW solutions to the Dust-Einstein system with a positive cosmological constant, J. Hyperbolic Differ. Equ., Volume 15 (2015), pp. 87-188 | DOI | MR
[8] Generalized Chaplygin gas as geometrical dark energy, Phys. Rev. D, Volume 76 (2007) | DOI | MR
[9] Chaplygin-like gas and branes in black hole bulks, Phys. Lett. B, Volume 487 (2000), pp. 7-13 | DOI | MR | Zbl
[10] The universe dominated by the extended Chaplygin gas, Mod. Phys. Lett. A, Volume 30 (2015) | DOI | MR
[11] The global nonlinear stability of Minkowski space for self-gravitating massive fields. The wave-Klein-Gordon model, Commun. Math. Phys., Volume 346 (2016), pp. 603-665 | DOI | MR
[12] The Global Nonlinear Stability of Minkowski Space for Self-Gravitating Massive Fields, World Scientific Press, Singapore, 2017
[13] The global nonlinear stability of Minkowski space. Einstein equations, f(R)-modified gravity, and Klein-Gordon fields (Monograph, Preprint to appear) | arXiv
[14] The characteristic initial value problem for plane–symmetric spacetimes with weak regularity, Class. Quantum Gravity, Volume 28 (2011), pp. 145019-145035 | DOI | MR | Zbl
[15] The global stability of Minkowski space-time in harmonic gauge, Ann. Math., Volume 171 (2010), pp. 1401-1477 | DOI | MR | Zbl
[16] A conformal approach for the analysis of the nonlinear stability of radiation cosmologies, Ann. Phys., Volume 328 (2013), pp. 1-25 | DOI | MR | Zbl
[17] Future stability of the FLRW fluid solutions in the presence of a positive cosmological constant, Commun. Math. Phys., Volume 346 (2016), pp. 293-312 | DOI | MR
[18] Quantum FLRW cosmological solutions in the presence of Chaplygin gas and perfect fluid, Phys. Lett. B, Volume 659 (2008), pp. 6-13 | DOI | MR | Zbl
[19] Asymptotics of solutions of the Einstein equations with positive cosmological constant, Ann. Henri Poincaré, Volume 5 (2004), pp. 1041-1064 | DOI | MR | Zbl
[20] Future stability of the Einstein-non-linear scalar field system, Invent. Math., Volume 173 (2008), pp. 123-208 | DOI | MR | Zbl
[21] The nonlinear future stability of the FLRW family of solutions to the irrotational Einstein-Euler system with a positive cosmological constant, J. Eur. Math. Soc., Volume 15 (2013), pp. 2369-2462 | DOI | MR | Zbl
[22] The nonlinear future-stability of the FLRW family of solutions to the Einstein-Euler system with a positive cosmological constant, Sel. Math. New Ser., Volume 18 (2012), pp. 633-715 | DOI | MR | Zbl
[23] Modified Chaplygin gas and constraints on its B parameter from CDM and UDME cosmological models, Mon. Not. R. Astron. Soc. (2008), pp. 1-5
[24] Large-scale structure in superfluid Chaplygin gas cosmology, Phys. Rev. D, Volume 89 (2014)
[25] Hyperboloidal evolution with the Einstein equations, Class. Quantum Gravity, Volume 25 (2008) | DOI | MR | Zbl
Cité par Sources :