Nonlinear stability of self-gravitating irrotational Chaplygin fluids in a FLRW geometry
Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 787-814.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We analyze the global nonlinear stability of FLRW (Friedmann-Lemaître-Robertson-Walker) spacetimes in the presence of an irrotational perfect fluid. We assume that the fluid is governed by the so-called (generalized) Chaplygin equation of state p=A2ρα relating the pressure to the mass-energy density, in which A>0 and α(0,1] are constants. We express the Einstein equations in wave gauge as a system of coupled nonlinear wave equations and, after performing a conformal transformation, we analyze the global behavior of solutions toward the future. Under small perturbations, the (3+1)-spacetime metric, the mass-energy density, and the velocity vector describing the geometry and fluid unknowns remain globally close to a reference FLRW solution. Our analysis provides also the precise asymptotic behavior of the perturbed solutions toward the future.

DOI : 10.1016/j.anihpc.2020.09.005
Mots-clés : Einstein-Euler equations, FLRW cosmology, Generalized Chaplygin gas, Conformal transformation, Wave gauge
LeFloch, Philippe G. 1 ; Wei, Changhua 2

1 a Laboratoire Jacques-Louis Lions and Centre National de la Recherche Scientifique, Sorbonne Université, 4 Place Jussieu, 75252 Paris, France
2 b Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
@article{AIHPC_2021__38_3_787_0,
     author = {LeFloch, Philippe G. and Wei, Changhua},
     title = {Nonlinear stability of self-gravitating irrotational {Chaplygin} fluids in a {FLRW} geometry},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {787--814},
     publisher = {Elsevier},
     volume = {38},
     number = {3},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.09.005},
     mrnumber = {4227052},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.09.005/}
}
TY  - JOUR
AU  - LeFloch, Philippe G.
AU  - Wei, Changhua
TI  - Nonlinear stability of self-gravitating irrotational Chaplygin fluids in a FLRW geometry
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 787
EP  - 814
VL  - 38
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.09.005/
DO  - 10.1016/j.anihpc.2020.09.005
LA  - en
ID  - AIHPC_2021__38_3_787_0
ER  - 
%0 Journal Article
%A LeFloch, Philippe G.
%A Wei, Changhua
%T Nonlinear stability of self-gravitating irrotational Chaplygin fluids in a FLRW geometry
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 787-814
%V 38
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.09.005/
%R 10.1016/j.anihpc.2020.09.005
%G en
%F AIHPC_2021__38_3_787_0
LeFloch, Philippe G.; Wei, Changhua. Nonlinear stability of self-gravitating irrotational Chaplygin fluids in a FLRW geometry. Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 787-814. doi : 10.1016/j.anihpc.2020.09.005. http://www.numdam.org/articles/10.1016/j.anihpc.2020.09.005/

[1] Benaoum, H.B. Modified Chaplygin gas cosmology, Adv. High Energy Phys. (2012) | MR | Zbl

[2] Bento, M.C.; Bertolami, O.; Sen, A.A. Generalized Chaplygin gas model: dark energy-dark matter unification and CMBR constraints, Gen. Relativ. Gravit., Volume 35 (2003), pp. 2063-2069 | DOI | MR | Zbl

[3] Debnath, U.; Banerjee, A.; Chakraborty, S. Role of modified Chaplygin gas in accelerated universe, Class. Quantum Gravity, Volume 21 (2004), pp. 5609-5617 | DOI | MR | Zbl

[4] Friedrich, H. On the existence of n -geodesically complete or future complete solutions of Einstein field equations with smooth asymptotic structure, Commun. Math. Phys., Volume 107 (1986), pp. 587-609 | DOI | MR | Zbl

[5] Friedrich, H. On the global existence and asymptotic behavior of solutions to the Einstein-Maxwell-Yang-Mills equations, J. Differ. Geom., Volume 34 (1991), pp. 275-345 | DOI | MR | Zbl

[6] Gorini, V.; Kamenshchik, A.; Moschella, U.; Pasquier, V. The Chaplygin gas as a model for dark energy (Preprint unpublished) | arXiv | DOI | Zbl

[7] Hadžić, M.; Speck, J. The global future stability of the FLRW solutions to the Dust-Einstein system with a positive cosmological constant, J. Hyperbolic Differ. Equ., Volume 15 (2015), pp. 87-188 | DOI | MR

[8] Heydari-Fard, M.; Sepangi, H.R. Generalized Chaplygin gas as geometrical dark energy, Phys. Rev. D, Volume 76 (2007) | DOI | MR

[9] Kamenshchik, A.; Moschella, U.; Pasquier, V. Chaplygin-like gas and branes in black hole bulks, Phys. Lett. B, Volume 487 (2000), pp. 7-13 | DOI | MR | Zbl

[10] Kahya, E.O.; Pourhassan, B. The universe dominated by the extended Chaplygin gas, Mod. Phys. Lett. A, Volume 30 (2015) | DOI | MR

[11] LeFloch, P.G.; Ma, Y. The global nonlinear stability of Minkowski space for self-gravitating massive fields. The wave-Klein-Gordon model, Commun. Math. Phys., Volume 346 (2016), pp. 603-665 | DOI | MR

[12] LeFloch, P.G.; Ma, Y. The Global Nonlinear Stability of Minkowski Space for Self-Gravitating Massive Fields, World Scientific Press, Singapore, 2017

[13] LeFloch, P.G.; Ma, Y. The global nonlinear stability of Minkowski space. Einstein equations, f(R)-modified gravity, and Klein-Gordon fields (Monograph, Preprint to appear) | arXiv

[14] LeFloch, P.G.; Stewart, J.M. The characteristic initial value problem for plane–symmetric spacetimes with weak regularity, Class. Quantum Gravity, Volume 28 (2011), pp. 145019-145035 | DOI | MR | Zbl

[15] Lindblad, H.; Rodnianski, I. The global stability of Minkowski space-time in harmonic gauge, Ann. Math., Volume 171 (2010), pp. 1401-1477 | DOI | MR | Zbl

[16] Lübbe, C.; Valiente Kroon, J.A. A conformal approach for the analysis of the nonlinear stability of radiation cosmologies, Ann. Phys., Volume 328 (2013), pp. 1-25 | DOI | MR | Zbl

[17] Oliynyk, T.A. Future stability of the FLRW fluid solutions in the presence of a positive cosmological constant, Commun. Math. Phys., Volume 346 (2016), pp. 293-312 | DOI | MR

[18] Pedram, P.; Jalalzadeh, S. Quantum FLRW cosmological solutions in the presence of Chaplygin gas and perfect fluid, Phys. Lett. B, Volume 659 (2008), pp. 6-13 | DOI | MR | Zbl

[19] Rendall, A.D. Asymptotics of solutions of the Einstein equations with positive cosmological constant, Ann. Henri Poincaré, Volume 5 (2004), pp. 1041-1064 | DOI | MR | Zbl

[20] Ringstöm, H. Future stability of the Einstein-non-linear scalar field system, Invent. Math., Volume 173 (2008), pp. 123-208 | DOI | MR | Zbl

[21] Rodnianski, I.; Speck, J. The nonlinear future stability of the FLRW family of solutions to the irrotational Einstein-Euler system with a positive cosmological constant, J. Eur. Math. Soc., Volume 15 (2013), pp. 2369-2462 | DOI | MR | Zbl

[22] Speck, J. The nonlinear future-stability of the FLRW family of solutions to the Einstein-Euler system with a positive cosmological constant, Sel. Math. New Ser., Volume 18 (2012), pp. 633-715 | DOI | MR | Zbl

[23] Thakur, P.; Ghose, S.; Paul, B.C. Modified Chaplygin gas and constraints on its B parameter from CDM and UDME cosmological models, Mon. Not. R. Astron. Soc. (2008), pp. 1-5

[24] Yang, R.J. Large-scale structure in superfluid Chaplygin gas cosmology, Phys. Rev. D, Volume 89 (2014)

[25] Zenginoğlu, A. Hyperboloidal evolution with the Einstein equations, Class. Quantum Gravity, Volume 25 (2008) | DOI | MR | Zbl

Cité par Sources :