The present paper is devoted to the study of the existence of a solution u for a quasilinear second order differential equation with homogeneous Dirichlet conditions, where the right-hand side tends to infinity at . The problem has been considered by several authors since the 70's. Mainly, nonnegative right-hand sides were considered and thus only nonnegative solutions were possible. Here we consider the case where the right-hand side can change sign but is non negative (finite or infinite) at , while no restriction on its growth at is assumed on its positive part. We show that there exists a nonnegative solution in a sense introduced in the paper; moreover, this solution is stable with respect to the right-hand side and is unique if the right-hand side is nonincreasing in u. We also show that if the right-hand side goes to infinity at zero faster than , then only nonnegative solutions are possible. We finally prove by means of the study of a one-dimensional example that nonnegative solutions and even many solutions which change sign can exist if the growth of the right-hand side is with .
Mots-clés : Singular equations, Monotone operators, Existence, Uniqueness, Positive and nonpositive solutions
@article{AIHPC_2021__38_3_877_0, author = {Casado-D{\'\i}az, Juan and Murat, Fran\c{c}ois}, title = {Semilinear problems with right-hand sides singular at $u = 0$ $ = 0 which change sign}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {877--909}, publisher = {Elsevier}, volume = {38}, number = {3}, year = {2021}, doi = {10.1016/j.anihpc.2020.09.001}, mrnumber = {4227055}, zbl = {1466.35111}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.09.001/} }
TY - JOUR AU - Casado-Díaz, Juan AU - Murat, François TI - Semilinear problems with right-hand sides singular at $u = 0$ $ = 0 which change sign JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 877 EP - 909 VL - 38 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2020.09.001/ DO - 10.1016/j.anihpc.2020.09.001 LA - en ID - AIHPC_2021__38_3_877_0 ER -
%0 Journal Article %A Casado-Díaz, Juan %A Murat, François %T Semilinear problems with right-hand sides singular at $u = 0$ $ = 0 which change sign %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 877-909 %V 38 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2020.09.001/ %R 10.1016/j.anihpc.2020.09.001 %G en %F AIHPC_2021__38_3_877_0
Casado-Díaz, Juan; Murat, François. Semilinear problems with right-hand sides singular at $u = 0$ $ = 0 which change sign. Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 877-909. doi : 10.1016/j.anihpc.2020.09.001. http://www.numdam.org/articles/10.1016/j.anihpc.2020.09.001/
[1] Some properties of solutions of some semilinear elliptic singular problems and applications to the -convergence, Asymptot. Anal., Volume 86 (2014), pp. 1-15 | MR | Zbl
[2] Unicité de la solution de certaines équations elliptiques non linéaires, C. R. Acad. Sci. Paris, Ser. I, Volume 315 (1992), pp. 1159-1164 | MR | Zbl
[3] Semilinear elliptic equations with singular nonlinearities, Calc. Var. Partial Differ. Equ., Volume 37 (2010), pp. 363-380 | DOI | MR | Zbl
[4] Uniqueness results for pseudomonotone problems with , C. R. Acad. Sci. Paris, Ser. I, Volume 344 (2007), pp. 487-492 | DOI | MR | Zbl
[5] Uniqueness results and monotonicity properties for strongly nonlinear elliptic variational inequalities, Ann. Sc. Norm. Super. Pisa, Volume 16 (1989), pp. 137-166 | Numdam | MR | Zbl
[6] Un terme étrange venu d'ailleurs, I et II (Brezis, H.; Lions, J.-L.; Cherkaev, A.; Kohn, R.V., eds.), Non-linear Partial Differential Equations and Their Applications. Collège de France Seminar, Vol. II and Vol. III, Pitman, London, 1982, pp. 98-138 (and 154–178 English translation:, A strange term coming from nowhere Topics in Mathematical Modeling of Composite Materials, 1997, Birkhäuser, Boston, pp. 44-93)
[7] On a singular nonlinear Dirichlet problem, Commun. Partial Differ. Equ., Volume 14 (1989), pp. 1315-1327 | DOI | MR | Zbl
[8] On a Dirichlet problem with a singular nonlinearity, Commun. Partial Differ. Equ., Volume 2 (1977), pp. 193-222 | DOI | MR | Zbl
[9] Positive versus free boundary solutions to a singular elliptic equation, J. Anal. Math., Volume 90 (2003), pp. 303-335 | DOI | MR | Zbl
[10] An elliptic equation with singular nonlinearity, Commun. Partial Differ. Equ., Volume 12 (1987), pp. 1333-1344 | DOI | MR | Zbl
[11] A. Ferone, A. Mercaldo, S. Segura de León, A singular elliptic equation and a related functional, submitted. | MR
[12] Advances in the study of singular semilinear elliptic problems (Ortegón Gallego, F.; Redondo Neble, M.V.; Rodríguez-Galván, J.R., eds.), Trends in Differential Equations and Applications, SEMA SIMAI Springer Ser., vol. 8, 2016, pp. 221-241 | DOI | MR | Zbl
[13] A semilinear elliptic equation with a mild singularity at : existence and homogenization, J. Math. Pures Appl., Volume 107 (2017), pp. 41-77 | DOI | MR | Zbl
[14] Definition, existence, stability and uniqueness of the solution to a semilinear elliptic problem with a strong singularity at , Ann. Sc. Norm. Super. Pisa, Volume 18 (2018), pp. 1395-1442 | MR | Zbl
[15] Homogenization of a Dirichlet semilinear elliptic problem with a strong singularity at in a domain with many small holes, J. Funct. Anal., Volume 274 (2018), pp. 1747-1789 | DOI | MR | Zbl
[16] On the definition of the solution to a semilinear elliptic problem with a strong singularity at , Nonlinear Anal., Theory Methods Appl., Volume 177 (2018), pp. 491-523 | DOI | MR | Zbl
[17] Quelques résultats de Visik sur les problèmes elliptiques non linéaires par les méthodes de Minty-Browder, Bull. Soc. Math. Fr., Volume 93 (1965), pp. 97-107 | DOI | Numdam | MR | Zbl
[18] Quelques Méthodes de Résolution des Problèmes aux Limites Non Linéaires, Dunod, Paris, 1969 | MR | Zbl
[19] Existence and approximation of solutions of non-linear elliptic equations, Math. Z., Volume 147 (1976), pp. 53-63 | DOI | MR | Zbl
Cité par Sources :