Uniqueness of Leray solutions of the 3D Navier-Stokes equations is a challenging open problem. In this article we will study this problem for the 3D stationary Navier-Stokes equations in the whole space
@article{AIHPC_2021__38_3_689_0, author = {Chamorro, Diego and Jarr{\'\i}n, Oscar and Lemari\'e-Rieusset, Pierre-Gilles}, title = {Some {Liouville} theorems for stationary {Navier-Stokes} equations in {Lebesgue} and {Morrey} spaces}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {689--710}, publisher = {Elsevier}, volume = {38}, number = {3}, year = {2021}, doi = {10.1016/j.anihpc.2020.08.006}, mrnumber = {4227049}, zbl = {1466.35282}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2020.08.006/} }
TY - JOUR AU - Chamorro, Diego AU - Jarrín, Oscar AU - Lemarié-Rieusset, Pierre-Gilles TI - Some Liouville theorems for stationary Navier-Stokes equations in Lebesgue and Morrey spaces JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 689 EP - 710 VL - 38 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2020.08.006/ DO - 10.1016/j.anihpc.2020.08.006 LA - en ID - AIHPC_2021__38_3_689_0 ER -
%0 Journal Article %A Chamorro, Diego %A Jarrín, Oscar %A Lemarié-Rieusset, Pierre-Gilles %T Some Liouville theorems for stationary Navier-Stokes equations in Lebesgue and Morrey spaces %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 689-710 %V 38 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2020.08.006/ %R 10.1016/j.anihpc.2020.08.006 %G en %F AIHPC_2021__38_3_689_0
Chamorro, Diego; Jarrín, Oscar; Lemarié-Rieusset, Pierre-Gilles. Some Liouville theorems for stationary Navier-Stokes equations in Lebesgue and Morrey spaces. Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 689-710. doi : 10.1016/j.anihpc.2020.08.006. https://www.numdam.org/articles/10.1016/j.anihpc.2020.08.006/
[1] On the Liouville theorem for the stationary Navier-Stokes equations in a critical space, J. Math. Anal. Appl., Volume 405 (2013), pp. 706-710 | DOI | MR | Zbl
[2] On Liouville type theorems for the steady Navier- Stokes equations in
[3] Liouville type theorems for the steady axially symmetric Navier-Stokes and magnetohydrodynamic equations, Discrete Contin. Dyn. Syst., Volume 36 (2016) no. 10, pp. 5267-5285 | DOI | MR | Zbl
[4] An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems, Springer Monographs in Mathematics, Springer, New York, 2011 | MR | Zbl
[5] Inégalités de Sobolev précisées, Sémin. Équ. Dériv. Partielles, Volume 1996–1997 ( 1996–1997 ), pp. 1-8 | Numdam | MR | Zbl
[6] A remark on the Liouville problem for stationary Navier-Stokes equations in Lorentz and Morrey spaces, J. Math. Anal. Appl., Volume 486 (2020) no. 1 | DOI | MR | Zbl
[7] A short note on the uniqueness of the trivial solution for the steady-state Navier-Stokes equations, 2019 | arXiv
[8] Liouville theorems for the Navier-Stokes equations and applications, Acta Math., Volume 203 (2009), pp. 83-105 | DOI | MR | Zbl
[9] A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions, J. Funct. Anal., Volume 272 (2017), pp. 804-818 | DOI | MR | Zbl
[10] The Navier-Stokes Problem in the 21st Century, Chapman & Hall/CRC, 2016 | DOI | MR | Zbl
[11] Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC, 2002 | MR | Zbl
[12] Liouville type theorem for stationary Navier-Stokes equations, Nonlinearity, Volume 29 (2015) (2191 :2195) | MR
[13] A Liouville type theorem for steady-state Navier-Stokes equations, 2016 | arXiv | MR | Zbl
Cité par Sources :