Uniqueness of Leray solutions of the 3D Navier-Stokes equations is a challenging open problem. In this article we will study this problem for the 3D stationary Navier-Stokes equations in the whole space
@article{AIHPC_2021__38_3_689_0, author = {Chamorro, Diego and Jarr{\'\i}n, Oscar and Lemari\'e-Rieusset, Pierre-Gilles}, title = {Some {Liouville} theorems for stationary {Navier-Stokes} equations in {Lebesgue} and {Morrey} spaces}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {689--710}, publisher = {Elsevier}, volume = {38}, number = {3}, year = {2021}, doi = {10.1016/j.anihpc.2020.08.006}, mrnumber = {4227049}, zbl = {1466.35282}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2020.08.006/} }
TY - JOUR AU - Chamorro, Diego AU - Jarrín, Oscar AU - Lemarié-Rieusset, Pierre-Gilles TI - Some Liouville theorems for stationary Navier-Stokes equations in Lebesgue and Morrey spaces JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 689 EP - 710 VL - 38 IS - 3 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2020.08.006/ DO - 10.1016/j.anihpc.2020.08.006 LA - en ID - AIHPC_2021__38_3_689_0 ER -
%0 Journal Article %A Chamorro, Diego %A Jarrín, Oscar %A Lemarié-Rieusset, Pierre-Gilles %T Some Liouville theorems for stationary Navier-Stokes equations in Lebesgue and Morrey spaces %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 689-710 %V 38 %N 3 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2020.08.006/ %R 10.1016/j.anihpc.2020.08.006 %G en %F AIHPC_2021__38_3_689_0
Chamorro, Diego; Jarrín, Oscar; Lemarié-Rieusset, Pierre-Gilles. Some Liouville theorems for stationary Navier-Stokes equations in Lebesgue and Morrey spaces. Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 689-710. doi : 10.1016/j.anihpc.2020.08.006. https://www.numdam.org/articles/10.1016/j.anihpc.2020.08.006/
[1] On the Liouville theorem for the stationary Navier-Stokes equations in a critical space, J. Math. Anal. Appl., Volume 405 (2013), pp. 706-710 | DOI | MR | Zbl
[2] On Liouville type theorems for the steady Navier- Stokes equations in
[3] Liouville type theorems for the steady axially symmetric Navier-Stokes and magnetohydrodynamic equations, Discrete Contin. Dyn. Syst., Volume 36 (2016) no. 10, pp. 5267-5285 | DOI | MR | Zbl
[4] An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems, Springer Monographs in Mathematics, Springer, New York, 2011 | MR | Zbl
[5] Inégalités de Sobolev précisées, Sémin. Équ. Dériv. Partielles, Volume 1996–1997 ( 1996–1997 ), pp. 1-8 | Numdam | MR | Zbl
[6] A remark on the Liouville problem for stationary Navier-Stokes equations in Lorentz and Morrey spaces, J. Math. Anal. Appl., Volume 486 (2020) no. 1 | DOI | MR | Zbl
[7] A short note on the uniqueness of the trivial solution for the steady-state Navier-Stokes equations, 2019 | arXiv
[8] Liouville theorems for the Navier-Stokes equations and applications, Acta Math., Volume 203 (2009), pp. 83-105 | DOI | MR | Zbl
[9] A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions, J. Funct. Anal., Volume 272 (2017), pp. 804-818 | DOI | MR | Zbl
[10] The Navier-Stokes Problem in the 21st Century, Chapman & Hall/CRC, 2016 | DOI | MR | Zbl
[11] Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC, 2002 | MR | Zbl
[12] Liouville type theorem for stationary Navier-Stokes equations, Nonlinearity, Volume 29 (2015) (2191 :2195) | MR
[13] A Liouville type theorem for steady-state Navier-Stokes equations, 2016 | arXiv | MR | Zbl
- Two improved anisotropic Liouville type theorems for the stationary 3D Navier–Stokes equations, Archiv der Mathematik (2025) | DOI:10.1007/s00013-025-02106-0
- Liouville-type theorem for the stationary fractional compressible MHD system in anisotropic Lebesgue spaces, Electronic Research Archive, Volume 33 (2025) no. 3, p. 1306 | DOI:10.3934/era.2025058
- Liouville-type theorems for steady solutions to the Navier–Stokes system in a slab, Journal of Fluid Mechanics, Volume 1005 (2025) | DOI:10.1017/jfm.2024.1173
- Liouville Type Theorems for the Stationary Navier–Stokes Equations in High-Dimension Without Vanishing Condition, Journal of Mathematical Fluid Mechanics, Volume 27 (2025) no. 2 | DOI:10.1007/s00021-025-00925-3
- Remarks on the Anisotropic Liouville Theorem for the Stationary Tropical Climate Model, Acta Applicandae Mathematicae, Volume 194 (2024) no. 1 | DOI:10.1007/s10440-024-00691-w
- Some Liouville-type theorems for the stationary 3D magneto-micropolar fluids, Acta Mathematica Scientia, Volume 44 (2024) no. 6, p. 2296 | DOI:10.1007/s10473-024-0614-0
- An
-theory for fractional stationary Navier–Stokes equations, Journal of Elliptic and Parabolic Equations, Volume 10 (2024) no. 2, p. 859 | DOI:10.1007/s41808-024-00282-8 - Liouville-type theorems for the Taylor–Couette–Poiseuille flow of the stationary Navier–Stokes equations, Journal of Fluid Mechanics, Volume 989 (2024) | DOI:10.1017/jfm.2024.355
- Some remarks about the stationary micropolar fluid equations: Existence, regularity and uniqueness, Journal of Mathematical Analysis and Applications, Volume 536 (2024) no. 2, p. 128201 | DOI:10.1016/j.jmaa.2024.128201
- Liouville-Type Theorems for the 3D Stationary MHD Equations, Mediterranean Journal of Mathematics, Volume 21 (2024) no. 4 | DOI:10.1007/s00009-024-02675-4
- New Liouville type theorems for the stationary Navier–Stokes, MHD, and Hall–MHD equations, Nonlinearity, Volume 37 (2024) no. 3, p. 035007 | DOI:10.1088/1361-6544/ad1efc
- The Liouville theorems for 3D stationary tropical climate model in local Morrey spaces, Applied Mathematics Letters, Volume 138 (2023), p. 108533 | DOI:10.1016/j.aml.2022.108533
- A short note on the Liouville problem for the steady-state Navier–Stokes equations, Archiv der Mathematik, Volume 121 (2023) no. 3, p. 303 | DOI:10.1007/s00013-023-01891-w
- Liouville-Type Theorems for 3D Stationary Tropical Climate Model in Mixed Local Morrey Spaces, Bulletin of the Malaysian Mathematical Sciences Society, Volume 46 (2023) no. 2 | DOI:10.1007/s40840-023-01460-y
- Liouville-type theorems for steady MHD and Hall-MHD equations in R2×T, Journal of Mathematical Analysis and Applications, Volume 528 (2023) no. 2, p. 127518 | DOI:10.1016/j.jmaa.2023.127518
- Liouville Theorems for a Stationary and Non-stationary Coupled System of Liquid Crystal Flows in Local Morrey Spaces, Journal of Mathematical Fluid Mechanics, Volume 24 (2022) no. 2 | DOI:10.1007/s00021-022-00686-3
- Liouville-type theorems for the stationary compressible barotropic and incompressible inhomogeneous Navier–Stokes equations, Journal of Mathematical Physics, Volume 63 (2022) no. 12 | DOI:10.1063/5.0085031
- Liouville type theorems for the stationary Hall‐magnetohydrodynamic equations in local Morrey spaces, Mathematical Methods in the Applied Sciences, Volume 45 (2022) no. 17, p. 10891 | DOI:10.1002/mma.8423
- On Liouville-type theorems for the stationary MHD and the Hall-MHD systems in
, Zeitschrift für angewandte Mathematik und Physik, Volume 73 (2022) no. 2 | DOI:10.1007/s00033-022-01701-3 - The Liouville theorems for 3D stationary tropical climate model, Mathematical Methods in the Applied Sciences, Volume 44 (2021) no. 18, p. 14437 | DOI:10.1002/mma.7710
Cité par 20 documents. Sources : Crossref