Uniqueness of Leray solutions of the 3D Navier-Stokes equations is a challenging open problem. In this article we will study this problem for the 3D stationary Navier-Stokes equations in the whole space . Under some additional hypotheses, stated in terms of Lebesgue and Morrey spaces, we will show that the trivial solution is the unique solution. This type of results are known as Liouville theorems.
@article{AIHPC_2021__38_3_689_0, author = {Chamorro, Diego and Jarr{\'\i}n, Oscar and Lemari\'e-Rieusset, Pierre-Gilles}, title = {Some {Liouville} theorems for stationary {Navier-Stokes} equations in {Lebesgue} and {Morrey} spaces}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {689--710}, publisher = {Elsevier}, volume = {38}, number = {3}, year = {2021}, doi = {10.1016/j.anihpc.2020.08.006}, mrnumber = {4227049}, zbl = {1466.35282}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.006/} }
TY - JOUR AU - Chamorro, Diego AU - Jarrín, Oscar AU - Lemarié-Rieusset, Pierre-Gilles TI - Some Liouville theorems for stationary Navier-Stokes equations in Lebesgue and Morrey spaces JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 689 EP - 710 VL - 38 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.006/ DO - 10.1016/j.anihpc.2020.08.006 LA - en ID - AIHPC_2021__38_3_689_0 ER -
%0 Journal Article %A Chamorro, Diego %A Jarrín, Oscar %A Lemarié-Rieusset, Pierre-Gilles %T Some Liouville theorems for stationary Navier-Stokes equations in Lebesgue and Morrey spaces %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 689-710 %V 38 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.006/ %R 10.1016/j.anihpc.2020.08.006 %G en %F AIHPC_2021__38_3_689_0
Chamorro, Diego; Jarrín, Oscar; Lemarié-Rieusset, Pierre-Gilles. Some Liouville theorems for stationary Navier-Stokes equations in Lebesgue and Morrey spaces. Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 689-710. doi : 10.1016/j.anihpc.2020.08.006. http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.006/
[1] On the Liouville theorem for the stationary Navier-Stokes equations in a critical space, J. Math. Anal. Appl., Volume 405 (2013), pp. 706-710 | DOI | MR | Zbl
[2] On Liouville type theorems for the steady Navier- Stokes equations in , 2016 | arXiv | MR | Zbl
[3] Liouville type theorems for the steady axially symmetric Navier-Stokes and magnetohydrodynamic equations, Discrete Contin. Dyn. Syst., Volume 36 (2016) no. 10, pp. 5267-5285 | DOI | MR | Zbl
[4] An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems, Springer Monographs in Mathematics, Springer, New York, 2011 | MR | Zbl
[5] Inégalités de Sobolev précisées, Sémin. Équ. Dériv. Partielles, Volume 1996–1997 ( 1996–1997 ), pp. 1-8 | Numdam | MR | Zbl
[6] A remark on the Liouville problem for stationary Navier-Stokes equations in Lorentz and Morrey spaces, J. Math. Anal. Appl., Volume 486 (2020) no. 1 | DOI | MR | Zbl
[7] A short note on the uniqueness of the trivial solution for the steady-state Navier-Stokes equations, 2019 | arXiv
[8] Liouville theorems for the Navier-Stokes equations and applications, Acta Math., Volume 203 (2009), pp. 83-105 | DOI | MR | Zbl
[9] A remark on Liouville-type theorems for the stationary Navier-Stokes equations in three space dimensions, J. Funct. Anal., Volume 272 (2017), pp. 804-818 | DOI | MR | Zbl
[10] The Navier-Stokes Problem in the 21st Century, Chapman & Hall/CRC, 2016 | DOI | MR | Zbl
[11] Recent Developments in the Navier-Stokes Problem, Chapman & Hall/CRC, 2002 | MR | Zbl
[12] Liouville type theorem for stationary Navier-Stokes equations, Nonlinearity, Volume 29 (2015) (2191 :2195) | MR
[13] A Liouville type theorem for steady-state Navier-Stokes equations, 2016 | arXiv | MR | Zbl
Cité par Sources :