A closed contact manifold is called Besse when all its Reeb orbits are closed, and Zoll when they have the same minimal period. In this paper, we provide a characterization of Besse contact forms for convex contact spheres and Riemannian unit tangent bundles in terms of -equivariant spectral invariants. Furthermore, for restricted contact type hypersurfaces of symplectic vector spaces, we give a sufficient condition for the Besse property via the Ekeland–Hofer capacities.
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.08.004
Mots-clés : Closed Reeb orbits, Closed geodesics, Besse manifolds, Zoll manifolds
@article{AIHPC_2021__38_3_549_0, author = {Ginzburg, Viktor L. and G\"urel, Ba\c{s}ak Z. and Mazzucchelli, Marco}, title = {On the spectral characterization of {Besse} and {Zoll} {Reeb} flows}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {549--576}, publisher = {Elsevier}, volume = {38}, number = {3}, year = {2021}, doi = {10.1016/j.anihpc.2020.08.004}, zbl = {1475.53086}, mrnumber = {4227045}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.004/} }
TY - JOUR AU - Ginzburg, Viktor L. AU - Gürel, Başak Z. AU - Mazzucchelli, Marco TI - On the spectral characterization of Besse and Zoll Reeb flows JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 549 EP - 576 VL - 38 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.004/ DO - 10.1016/j.anihpc.2020.08.004 LA - en ID - AIHPC_2021__38_3_549_0 ER -
%0 Journal Article %A Ginzburg, Viktor L. %A Gürel, Başak Z. %A Mazzucchelli, Marco %T On the spectral characterization of Besse and Zoll Reeb flows %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 549-576 %V 38 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.004/ %R 10.1016/j.anihpc.2020.08.004 %G en %F AIHPC_2021__38_3_549_0
Ginzburg, Viktor L.; Gürel, Başak Z.; Mazzucchelli, Marco. On the spectral characterization of Besse and Zoll Reeb flows. Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 549-576. doi : 10.1016/j.anihpc.2020.08.004. http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.004/
[1] Symplectic homology of convex domains and Clarke's duality, 2019 | arXiv | Zbl
[2] On critical point theory for indefinite functionals in the presence of symmetries, Trans. Am. Math. Soc., Volume 274 (1982) no. 2, pp. 533-572 | DOI | MR | Zbl
[3] Manifolds All of Whose Geodesics Are Closed, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 93, Springer-Verlag, Berlin, New York, 1978 | MR | Zbl
[4] On manifolds all of whose geodesics are closed, Ann. Math., Volume 60 (1954) no. 2, pp. 375-382 | DOI | MR | Zbl
[5] On the iteration of closed geodesics and the Sturm intersection theory, Commun. Pure Appl. Math., Volume 9 (1956), pp. 171-206 | DOI | MR | Zbl
[6] Espaces de Kreĭn et index des systèmes hamiltoniens, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 7 (1990) no. 6, pp. 525-560 | DOI | Numdam | MR | Zbl
[7] Existence of closed geodesics on positively curved manifolds, J. Differ. Geom., Volume 18 (1983) no. 2, pp. 221-252 | DOI | MR | Zbl
[8] On contact manifolds, Ann. Math. (2), Volume 68 (1958), pp. 721-734 | DOI | MR | Zbl
[9] From one Reeb orbit to two, J. Differ. Geom., Volume 102 (2016) no. 1, pp. 25-36 | DOI | MR | Zbl
[10] The action spectrum characterizes closed contact 3-manifolds all of whose Reeb orbits are closed, Comment. Math. Helv. (2019) (in press) | arXiv | MR | Zbl
[11] Convex Hamiltonian energy surfaces and their periodic trajectories, Comm. Math. Phys., Volume 113 (1987) no. 3, pp. 419-469 | DOI | MR | Zbl
[12] Symplectic topology and Hamiltonian dynamics, Math. Z., Volume 200 (1989) no. 3, pp. 355-378 | DOI | MR | Zbl
[13] Symplectic topology and Hamiltonian dynamics. II, Math. Z., Volume 203 (1990) no. 4, pp. 553-567 | DOI | MR | Zbl
[14] Une théorie de Morse pour les systèmes hamiltoniens convexes, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984) no. 1, pp. 19-78 | DOI | Numdam | MR | Zbl
[15] Convexity Methods in Hamiltonian Mechanics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 19, Springer-Verlag, Berlin, 1990 | MR | Zbl
[16] On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. Math., Volume 112 (1980) no. 2, pp. 283-319 | DOI | MR | Zbl
[17] Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math., Volume 45 (1978) no. 2, pp. 139-174 | DOI | MR | Zbl
[18] On metrics on all of whose geodesics are closed, Invent. Math., Volume 65 (1981), pp. 175-177 | DOI | MR | Zbl
[19] Lusternik-Schnirelmann theory and closed Reeb orbits, Math. Z., Volume 295 (2020), pp. 515-582 | DOI | MR | Zbl
[20] Moment Maps, Cobordisms, and Hamiltonian Group Actions, Mathematical Surveys and Monographs, vol. 98, American Mathematical Society, Providence, RI, 2002 (Appendix J by Maxim Braverman) | MR | Zbl
[21] Equivariant Morse theory and closed geodesics, J. Differ. Geom., Volume 19 (1984) no. 1, pp. 85-116 | DOI | MR | Zbl
[22] Action selectors and the fixed point set of a Hamiltonian diffeomorphism, 2012 | arXiv
[23] Lecture notes on embedded contact homology, Contact and Symplectic Topology, Bolyai Soc. Math. Stud., vol. 26, János Bolyai Math. Soc., Budapest, 2014, pp. 389-484 | DOI | MR | Zbl
[24] Periodic solutions on hypersurfaces and a result by C. Viterbo, Invent. Math., Volume 90 (1987) no. 1, pp. 1-9 | DOI | MR | Zbl
[25] Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 1994 | DOI | MR | Zbl
[26] Symplectic homology capacity of convex bodies and loop space homology, 2019 | arXiv
[27] Lectures on Closed Geodesics, Grundlehren der Mathematischen Wissenschaften, vol. 230, Springer-Verlag, Berlin, 1978 | MR | Zbl
[28] Hyperbolic closed characteristics on compact convex smooth hypersurfaces in , J. Differ. Equ., Volume 150 (1998) no. 2, pp. 227-249 | DOI | MR | Zbl
[29] Closed characteristics on compact convex hypersurfaces in , Ann. Math., Volume 155 (2002) no. 2, pp. 317-368 | DOI | MR | Zbl
[30] A characterization of Zoll Riemannian metrics on the 2-sphere, Bull. Lond. Math. Soc., Volume 50 (2018) no. 6, pp. 997-1006 | DOI | MR | Zbl
[31] A min-max characterization of Zoll Riemannian metrics, 2018 | arXiv | Zbl
[32] The Fadell-Rabinowitz index and closed geodesics, J. Lond. Math. Soc. (2), Volume 50 (1994) no. 3, pp. 609-624 | DOI | MR | Zbl
[33] On the Berger conjecture for manifolds all of whose geodesics are closed, Invent. Math., Volume 210 (2017), pp. 911-962 | DOI | MR | Zbl
[34] On manifolds with many closed geodesics, Port. Math., Volume 22 (1963), pp. 193-196 | MR | Zbl
[35] Almost regular contact manifolds, J. Differ. Geom., Volume 11 (1976) no. 4, pp. 521-533 | DOI | MR | Zbl
[36] Equivariant Morse theory for starshaped Hamiltonian systems, Trans. Am. Math. Soc., Volume 311 (1989) no. 2, pp. 621-655 | DOI | MR | Zbl
[37] Some remarks on Massey products, tied cohomology classes, and the Lusternik-Shnirelman category, Duke Math. J., Volume 86 (1997) no. 3, pp. 547-564 | DOI | MR | Zbl
[38] Geodesic foliations by circles, J. Differ. Geom., Volume 10 (1975) no. 4, pp. 541-549 | DOI | MR | Zbl
[39] Index parity of closed geodesics and rigidity of Hopf fibrations, Invent. Math., Volume 144 (2001), pp. 281-295 | DOI | MR | Zbl
Cité par Sources :
This work was partially supported by the NSF Grant DMS-1440140 via MSRI (BG and MM), the NSF CAREER award DMS-1454342 (BG), and by Simons Foundation Collaboration Grant 581382 (VG).