On the spectral characterization of Besse and Zoll Reeb flows
Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 549-576.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

A closed contact manifold is called Besse when all its Reeb orbits are closed, and Zoll when they have the same minimal period. In this paper, we provide a characterization of Besse contact forms for convex contact spheres and Riemannian unit tangent bundles in terms of S1-equivariant spectral invariants. Furthermore, for restricted contact type hypersurfaces of symplectic vector spaces, we give a sufficient condition for the Besse property via the Ekeland–Hofer capacities.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.08.004
Classification : 53D10, 58E05, 53C22
Mots-clés : Closed Reeb orbits, Closed geodesics, Besse manifolds, Zoll manifolds
Ginzburg, Viktor L. 1 ; Gürel, Başak Z. 2 ; Mazzucchelli, Marco 3

1 a Department of Mathematics, UC Santa Cruz, Santa Cruz, CA 95064, USA
2 b Department of Mathematics, UCF, Orlando, FL 32816, USA
3 c CNRS, UMPA, École Normale Supérieure de Lyon, 69364 Lyon, France
@article{AIHPC_2021__38_3_549_0,
     author = {Ginzburg, Viktor L. and G\"urel, Ba\c{s}ak Z. and Mazzucchelli, Marco},
     title = {On the spectral characterization of {Besse} and {Zoll} {Reeb} flows},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {549--576},
     publisher = {Elsevier},
     volume = {38},
     number = {3},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.08.004},
     zbl = {1475.53086},
     mrnumber = {4227045},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.004/}
}
TY  - JOUR
AU  - Ginzburg, Viktor L.
AU  - Gürel, Başak Z.
AU  - Mazzucchelli, Marco
TI  - On the spectral characterization of Besse and Zoll Reeb flows
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 549
EP  - 576
VL  - 38
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.004/
DO  - 10.1016/j.anihpc.2020.08.004
LA  - en
ID  - AIHPC_2021__38_3_549_0
ER  - 
%0 Journal Article
%A Ginzburg, Viktor L.
%A Gürel, Başak Z.
%A Mazzucchelli, Marco
%T On the spectral characterization of Besse and Zoll Reeb flows
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 549-576
%V 38
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.004/
%R 10.1016/j.anihpc.2020.08.004
%G en
%F AIHPC_2021__38_3_549_0
Ginzburg, Viktor L.; Gürel, Başak Z.; Mazzucchelli, Marco. On the spectral characterization of Besse and Zoll Reeb flows. Annales de l'I.H.P. Analyse non linéaire, mai – juin 2021, Tome 38 (2021) no. 3, pp. 549-576. doi : 10.1016/j.anihpc.2020.08.004. http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.004/

[1] Abbondandolo, A.; Kang, J. Symplectic homology of convex domains and Clarke's duality, 2019 | arXiv | Zbl

[2] Benci, V. On critical point theory for indefinite functionals in the presence of symmetries, Trans. Am. Math. Soc., Volume 274 (1982) no. 2, pp. 533-572 | DOI | MR | Zbl

[3] Besse, A.L. Manifolds All of Whose Geodesics Are Closed, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 93, Springer-Verlag, Berlin, New York, 1978 | MR | Zbl

[4] Bott, R. On manifolds all of whose geodesics are closed, Ann. Math., Volume 60 (1954) no. 2, pp. 375-382 | DOI | MR | Zbl

[5] Bott, R. On the iteration of closed geodesics and the Sturm intersection theory, Commun. Pure Appl. Math., Volume 9 (1956), pp. 171-206 | DOI | MR | Zbl

[6] Brousseau, V. Espaces de Kreĭn et index des systèmes hamiltoniens, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 7 (1990) no. 6, pp. 525-560 | DOI | Numdam | MR | Zbl

[7] Ballmann, W.; Thorbergsson, G.; Ziller, W. Existence of closed geodesics on positively curved manifolds, J. Differ. Geom., Volume 18 (1983) no. 2, pp. 221-252 | DOI | MR | Zbl

[8] Boothby, W.M.; Wang, H.C. On contact manifolds, Ann. Math. (2), Volume 68 (1958), pp. 721-734 | DOI | MR | Zbl

[9] Cristofaro-Gardiner, D.; Hutchings, M. From one Reeb orbit to two, J. Differ. Geom., Volume 102 (2016) no. 1, pp. 25-36 | DOI | MR | Zbl

[10] Cristofaro-Gardiner, D.; Mazzucchelli, M. The action spectrum characterizes closed contact 3-manifolds all of whose Reeb orbits are closed, Comment. Math. Helv. (2019) (in press) | arXiv | MR | Zbl

[11] Ekeland, I.; Hofer, H. Convex Hamiltonian energy surfaces and their periodic trajectories, Comm. Math. Phys., Volume 113 (1987) no. 3, pp. 419-469 | DOI | MR | Zbl

[12] Ekeland, I.; Hofer, H. Symplectic topology and Hamiltonian dynamics, Math. Z., Volume 200 (1989) no. 3, pp. 355-378 | DOI | MR | Zbl

[13] Ekeland, I.; Hofer, H. Symplectic topology and Hamiltonian dynamics. II, Math. Z., Volume 203 (1990) no. 4, pp. 553-567 | DOI | MR | Zbl

[14] Ekeland, I. Une théorie de Morse pour les systèmes hamiltoniens convexes, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 1 (1984) no. 1, pp. 19-78 | DOI | Numdam | MR | Zbl

[15] Ekeland, I. Convexity Methods in Hamiltonian Mechanics, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), vol. 19, Springer-Verlag, Berlin, 1990 | MR | Zbl

[16] Ekeland, I.; Lasry, J.-M. On the number of periodic trajectories for a Hamiltonian flow on a convex energy surface, Ann. Math., Volume 112 (1980) no. 2, pp. 283-319 | DOI | MR | Zbl

[17] Fadell, E.R.; Rabinowitz, P.H. Generalized cohomological index theories for Lie group actions with an application to bifurcation questions for Hamiltonian systems, Invent. Math., Volume 45 (1978) no. 2, pp. 139-174 | DOI | MR | Zbl

[18] Gromoll, D.; Grove, K. On metrics on S2 all of whose geodesics are closed, Invent. Math., Volume 65 (1981), pp. 175-177 | DOI | MR | Zbl

[19] Ginzburg, V.L.; Gürel, B.Z. Lusternik-Schnirelmann theory and closed Reeb orbits, Math. Z., Volume 295 (2020), pp. 515-582 | DOI | MR | Zbl

[20] Guillemin, V.; Ginzburg, V.; Karshon, Y. Moment Maps, Cobordisms, and Hamiltonian Group Actions, Mathematical Surveys and Monographs, vol. 98, American Mathematical Society, Providence, RI, 2002 (Appendix J by Maxim Braverman) | MR | Zbl

[21] Hingston, N. Equivariant Morse theory and closed geodesics, J. Differ. Geom., Volume 19 (1984) no. 1, pp. 85-116 | DOI | MR | Zbl

[22] Howard, W. Action selectors and the fixed point set of a Hamiltonian diffeomorphism, 2012 | arXiv

[23] Hutchings, M. Lecture notes on embedded contact homology, Contact and Symplectic Topology, Bolyai Soc. Math. Stud., vol. 26, János Bolyai Math. Soc., Budapest, 2014, pp. 389-484 | DOI | MR | Zbl

[24] Hofer, H.; Zehnder, E. Periodic solutions on hypersurfaces and a result by C. Viterbo, Invent. Math., Volume 90 (1987) no. 1, pp. 1-9 | DOI | MR | Zbl

[25] Hofer, H.; Zehnder, E. Symplectic Invariants and Hamiltonian Dynamics, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 1994 | DOI | MR | Zbl

[26] Irie, K. Symplectic homology capacity of convex bodies and loop space homology, 2019 | arXiv

[27] Klingenberg, W. Lectures on Closed Geodesics, Grundlehren der Mathematischen Wissenschaften, vol. 230, Springer-Verlag, Berlin, 1978 | MR | Zbl

[28] Long, Y. Hyperbolic closed characteristics on compact convex smooth hypersurfaces in R2n , J. Differ. Equ., Volume 150 (1998) no. 2, pp. 227-249 | DOI | MR | Zbl

[29] Long, Y.; Zhu, C. Closed characteristics on compact convex hypersurfaces in R2n , Ann. Math., Volume 155 (2002) no. 2, pp. 317-368 | DOI | MR | Zbl

[30] Mazzucchelli, M.; Suhr, S. A characterization of Zoll Riemannian metrics on the 2-sphere, Bull. Lond. Math. Soc., Volume 50 (2018) no. 6, pp. 997-1006 | DOI | MR | Zbl

[31] Mazzucchelli, M.; Suhr, S. A min-max characterization of Zoll Riemannian metrics, 2018 | arXiv | Zbl

[32] Rademacher, H.-B. The Fadell-Rabinowitz index and closed geodesics, J. Lond. Math. Soc. (2), Volume 50 (1994) no. 3, pp. 609-624 | DOI | MR | Zbl

[33] Radeschi, M.; Wilking, B. On the Berger conjecture for manifolds all of whose geodesics are closed, Invent. Math., Volume 210 (2017), pp. 911-962 | DOI | MR | Zbl

[34] Samelson, H. On manifolds with many closed geodesics, Port. Math., Volume 22 (1963), pp. 193-196 | MR | Zbl

[35] Thomas, C.B. Almost regular contact manifolds, J. Differ. Geom., Volume 11 (1976) no. 4, pp. 521-533 | DOI | MR | Zbl

[36] Viterbo, C. Equivariant Morse theory for starshaped Hamiltonian systems, Trans. Am. Math. Soc., Volume 311 (1989) no. 2, pp. 621-655 | DOI | MR | Zbl

[37] Viterbo, C. Some remarks on Massey products, tied cohomology classes, and the Lusternik-Shnirelman category, Duke Math. J., Volume 86 (1997) no. 3, pp. 547-564 | DOI | MR | Zbl

[38] Wadsley, A.W. Geodesic foliations by circles, J. Differ. Geom., Volume 10 (1975) no. 4, pp. 541-549 | DOI | MR | Zbl

[39] Wilking, B. Index parity of closed geodesics and rigidity of Hopf fibrations, Invent. Math., Volume 144 (2001), pp. 281-295 | DOI | MR | Zbl

Cité par Sources :

This work was partially supported by the NSF Grant DMS-1440140 via MSRI (BG and MM), the NSF CAREER award DMS-1454342 (BG), and by Simons Foundation Collaboration Grant 581382 (VG).