This paper is concerned with the Cauchy problem of the 2D Zakharov-Kuznetsov equation. We prove bilinear estimates which imply local in time well-posedness in the Sobolev space for , and these are optimal up to the endpoint. We utilize the nonlinear version of the classical Loomis-Whitney inequality and develop an almost orthogonal decomposition of the set of resonant frequencies. As a corollary, we obtain global well-posedness in .
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.08.003
Mots-clés : Well-posedness, Cauchy problem, Low regularity, Bilinear estimate, Nonlinear Loomis-Whitney inequality
@article{AIHPC_2021__38_2_451_0, author = {Kinoshita, Shinya}, title = {Global well-posedness for the {Cauchy} problem of the {Zakharov-Kuznetsov} equation in {2D}}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {451--505}, publisher = {Elsevier}, volume = {38}, number = {2}, year = {2021}, doi = {10.1016/j.anihpc.2020.08.003}, mrnumber = {4211993}, zbl = {1458.35373}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.003/} }
TY - JOUR AU - Kinoshita, Shinya TI - Global well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 451 EP - 505 VL - 38 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.003/ DO - 10.1016/j.anihpc.2020.08.003 LA - en ID - AIHPC_2021__38_2_451_0 ER -
%0 Journal Article %A Kinoshita, Shinya %T Global well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 451-505 %V 38 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.003/ %R 10.1016/j.anihpc.2020.08.003 %G en %F AIHPC_2021__38_2_451_0
Kinoshita, Shinya. Global well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D. Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 451-505. doi : 10.1016/j.anihpc.2020.08.003. http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.003/
[1] On the 2D Zakharov system with Schrödinger data, Nonlinearity, Volume 22 (2009), pp. 1063-1089 | DOI | MR | Zbl
[2] Convolutions of singular measures and applications to the Zakharov system, J. Funct. Anal., Volume 261 (2011), pp. 478-506 | DOI | MR | Zbl
[3] A convolution estimate for two-dimensional hypersurfaces, Rev. Mat. Iberoam., Volume 26 (2010), pp. 707-728 | DOI | MR | Zbl
[4] A non-linear generalization of the Loomis-Whitney inequality and applications, Math. Res. Lett., Volume 12 (2005), pp. 443-457 | DOI | MR | Zbl
[5] Well-posedness results for the modified Zakharov-Kuznetsov equation, Nonlinear Equations: Methods, Models and Applications, Progr. Nonlinear Differential Equations Appl., vol. 54, Birkhäuser, 2003, pp. 181-189 | MR | Zbl
[6] Periodic Korteweg de Vries equation with measures as initial data, Sel. Math. New Ser., Volume 3 (1997) no. 2, pp. 115-159 | DOI | MR | Zbl
[7] The Cauchy problem for the Zakharov-Kuznetsov equation, Differ. Uravn., Volume 31 (1995), pp. 1070-1081 (in Russian), translation in Differ. Equ., 31, 1995, pp. 1002-1012 | MR | Zbl
[8] A note on the 2D generalized Zakharov–Kuznetsov equation: local, global, and scattering results, J. Differ. Equ., Volume 253 (2012), pp. 2558-2571 | DOI | MR | Zbl
[9] On the Cauchy problem for the Zakharov system, J. Funct. Anal., Volume 151 (1997) no. 2, pp. 384-436 | DOI | MR | Zbl
[10] A remark on the modified Zakharov–Kuznetsov equation in three space dimensions, Math. Res. Lett., Volume 21 (2014), pp. 127-131 | DOI | MR | Zbl
[11] On the generalized Zakharov–Kuznetsov equation at critical regularity, 2015 | arXiv
[12] The Fourier restriction norm method for the Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., Volume 34 (2014), pp. 2061-2068 | DOI | MR | Zbl
[13] Local ill-posedness of the 1D Zakharov system, Electron. J. Differ. Equ., Volume 24 (2007) (22 pp) | MR | Zbl
[14] Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., Volume 40 (1991), pp. 33-69 | DOI | MR | Zbl
[15] A bilinear estimate with applications to the KdV equation, J. Am. Soc., Volume 9 (1996), pp. 573-603 | MR | Zbl
[16] Nonlinear ion-acoustic waves in weak magnetic fields, Phys. Fluids, Volume 25 (1982), pp. 985-989 | DOI | MR | Zbl
[17] The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation, Prog. Nonlinear Differ. Equ. Appl., Volume 84 (2013), pp. 181-213 | MR | Zbl
[18] Well-posedness for the two-dimensional modified Zakharov–Kuznetsov equation, SIAM J. Math. Anal., Volume 41 (2009), pp. 1323-1339 | DOI | MR | Zbl
[19] Local and global well-posedness for the 2D generalized Zakharov–Kuznetsov equation, J. Funct. Anal., Volume 260 (2011), pp. 1060-1085 | DOI | MR | Zbl
[20] The Cauchy problem for the 3D Zakharov–Kuznetsov equation, Discrete Contin. Dyn. Syst., Volume 24 (2009), pp. 547-565 | DOI | MR | Zbl
[21] An inequality related to the isoperimetric inequality, Bull. Am. Math. Soc., Volume 55 (1949), pp. 961-962 | DOI | MR | Zbl
[22] Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 32 (2015), pp. 347-371 | DOI | Numdam | MR | Zbl
[23] A note on the Cauchy problem for the 2D generalized Zakharov–Kuznetsov equations, C. R. Math. Acad. Sci. Paris, Volume 350 (2012), pp. 499-503 | DOI | MR | Zbl
[24] Well-posedness results for the three-dimensional Zakharov–Kuznetsov equation, SIAM J. Math. Anal., Volume 44 (2012), pp. 2289-2304 | DOI | MR | Zbl
[25] Nonlinear Dispersive Equations: Local and Global Analysis, AMS, 2006 | MR | Zbl
[26] Three-dimensional solitons, Sov. Phys. JETP, Volume 39 (1974), pp. 285-286
Cité par Sources :