Global well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D
Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 451-505.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

This paper is concerned with the Cauchy problem of the 2D Zakharov-Kuznetsov equation. We prove bilinear estimates which imply local in time well-posedness in the Sobolev space Hs(R2) for s>1/4, and these are optimal up to the endpoint. We utilize the nonlinear version of the classical Loomis-Whitney inequality and develop an almost orthogonal decomposition of the set of resonant frequencies. As a corollary, we obtain global well-posedness in L2(R2).

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.08.003
Classification : 35Q53, 35A01
Mots-clés : Well-posedness, Cauchy problem, Low regularity, Bilinear estimate, Nonlinear Loomis-Whitney inequality
Kinoshita, Shinya 1

1 Universität Bielefeld, Fakultät für Mathematik, Postfach 10 01 31, 33501, Bielefeld, Germany
@article{AIHPC_2021__38_2_451_0,
     author = {Kinoshita, Shinya},
     title = {Global well-posedness for the {Cauchy} problem of the {Zakharov-Kuznetsov} equation in {2D}},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {451--505},
     publisher = {Elsevier},
     volume = {38},
     number = {2},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.08.003},
     mrnumber = {4211993},
     zbl = {1458.35373},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.003/}
}
TY  - JOUR
AU  - Kinoshita, Shinya
TI  - Global well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 451
EP  - 505
VL  - 38
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.003/
DO  - 10.1016/j.anihpc.2020.08.003
LA  - en
ID  - AIHPC_2021__38_2_451_0
ER  - 
%0 Journal Article
%A Kinoshita, Shinya
%T Global well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 451-505
%V 38
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.003/
%R 10.1016/j.anihpc.2020.08.003
%G en
%F AIHPC_2021__38_2_451_0
Kinoshita, Shinya. Global well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D. Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 451-505. doi : 10.1016/j.anihpc.2020.08.003. http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.003/

[1] Bejenaru, I.; Herr, S.; Holmer, J.; Tataru, D. On the 2D Zakharov system with L2 Schrödinger data, Nonlinearity, Volume 22 (2009), pp. 1063-1089 | DOI | MR | Zbl

[2] Bejenaru, I.; Herr, S. Convolutions of singular measures and applications to the Zakharov system, J. Funct. Anal., Volume 261 (2011), pp. 478-506 | DOI | MR | Zbl

[3] Bejenaru, I.; Herr, S.; Tataru, D. A convolution estimate for two-dimensional hypersurfaces, Rev. Mat. Iberoam., Volume 26 (2010), pp. 707-728 | DOI | MR | Zbl

[4] Bennett, J.; Carbery, A.; Wright, J. A non-linear generalization of the Loomis-Whitney inequality and applications, Math. Res. Lett., Volume 12 (2005), pp. 443-457 | DOI | MR | Zbl

[5] Biagioni, H.A.; Linares, F. Well-posedness results for the modified Zakharov-Kuznetsov equation, Nonlinear Equations: Methods, Models and Applications, Progr. Nonlinear Differential Equations Appl., vol. 54, Birkhäuser, 2003, pp. 181-189 | MR | Zbl

[6] Bourgain, J. Periodic Korteweg de Vries equation with measures as initial data, Sel. Math. New Ser., Volume 3 (1997) no. 2, pp. 115-159 | DOI | MR | Zbl

[7] Faminskii, A.V. The Cauchy problem for the Zakharov-Kuznetsov equation, Differ. Uravn., Volume 31 (1995), pp. 1070-1081 (in Russian), translation in Differ. Equ., 31, 1995, pp. 1002-1012 | MR | Zbl

[8] Fatah, L.G.; Linares, F.; Pastor, A. A note on the 2D generalized Zakharov–Kuznetsov equation: local, global, and scattering results, J. Differ. Equ., Volume 253 (2012), pp. 2558-2571 | DOI | MR | Zbl

[9] Ginibre, J.; Tsutsumi, Y.; Velo, G. On the Cauchy problem for the Zakharov system, J. Funct. Anal., Volume 151 (1997) no. 2, pp. 384-436 | DOI | MR | Zbl

[10] Grünrock, A. A remark on the modified Zakharov–Kuznetsov equation in three space dimensions, Math. Res. Lett., Volume 21 (2014), pp. 127-131 | DOI | MR | Zbl

[11] Grünrock, A. On the generalized Zakharov–Kuznetsov equation at critical regularity, 2015 | arXiv

[12] Grünrock, A.; Herr, S. The Fourier restriction norm method for the Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., Volume 34 (2014), pp. 2061-2068 | DOI | MR | Zbl

[13] Holmer, J. Local ill-posedness of the 1D Zakharov system, Electron. J. Differ. Equ., Volume 24 (2007) (22 pp) | MR | Zbl

[14] Kenig, C.E.; Ponce, G.; Vega, L. Oscillatory integrals and regularity of dispersive equations, Indiana Univ. Math. J., Volume 40 (1991), pp. 33-69 | DOI | MR | Zbl

[15] Kenig, C.; Ponce, G.; Vega, L. A bilinear estimate with applications to the KdV equation, J. Am. Soc., Volume 9 (1996), pp. 573-603 | MR | Zbl

[16] Laedke, E.W.; Spatschek, K.-H. Nonlinear ion-acoustic waves in weak magnetic fields, Phys. Fluids, Volume 25 (1982), pp. 985-989 | DOI | MR | Zbl

[17] Lannes, D.; Linares, F.; Saut, J.-C. The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation, Prog. Nonlinear Differ. Equ. Appl., Volume 84 (2013), pp. 181-213 | MR | Zbl

[18] Linares, F.; Pastor, A. Well-posedness for the two-dimensional modified Zakharov–Kuznetsov equation, SIAM J. Math. Anal., Volume 41 (2009), pp. 1323-1339 | DOI | MR | Zbl

[19] Linares, F.; Pastor, A. Local and global well-posedness for the 2D generalized Zakharov–Kuznetsov equation, J. Funct. Anal., Volume 260 (2011), pp. 1060-1085 | DOI | MR | Zbl

[20] Linares, F.; Saut, J.-C. The Cauchy problem for the 3D Zakharov–Kuznetsov equation, Discrete Contin. Dyn. Syst., Volume 24 (2009), pp. 547-565 | DOI | MR | Zbl

[21] Loomis, L.; Whitney, H. An inequality related to the isoperimetric inequality, Bull. Am. Math. Soc., Volume 55 (1949), pp. 961-962 | DOI | MR | Zbl

[22] Molinet, L.; Pilod, D. Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 32 (2015), pp. 347-371 | DOI | Numdam | MR | Zbl

[23] Ribaud, F.; Vento, S. A note on the Cauchy problem for the 2D generalized Zakharov–Kuznetsov equations, C. R. Math. Acad. Sci. Paris, Volume 350 (2012), pp. 499-503 | DOI | MR | Zbl

[24] Ribaud, F.; Vento, S. Well-posedness results for the three-dimensional Zakharov–Kuznetsov equation, SIAM J. Math. Anal., Volume 44 (2012), pp. 2289-2304 | DOI | MR | Zbl

[25] Tao, T. Nonlinear Dispersive Equations: Local and Global Analysis, AMS, 2006 | MR | Zbl

[26] Zakharov, V.E.; Kuznetsov, E.A. Three-dimensional solitons, Sov. Phys. JETP, Volume 39 (1974), pp. 285-286

Cité par Sources :