A dynamical approach to semilinear elliptic equations
Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 421-450.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

A characterization of a semilinear elliptic partial differential equation (PDE) on a bounded domain in Rn is given in terms of an infinite-dimensional dynamical system. The dynamical system is on the space of boundary data for the PDE. This is a novel approach to elliptic problems that enables the use of dynamical systems tools in studying the corresponding PDE. The dynamical system is ill-posed, meaning solutions do not exist forwards or backwards in time for generic initial data. We offer a framework in which this ill-posed system can be analyzed. This can be viewed as generalizing the theory of spatial dynamics, which applies to the case of an infinite cylindrical domain.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.08.001
Classification : 35J67, 35A24, 34D09, 35J25
Mots-clés : Semilinear equations, Spatial dynamics, Dynamical systems
Beck, Margaret 1 ; Cox, Graham 2 ; Jones, Christopher 3 ; Latushkin, Yuri 4 ; Sukhtayev, Alim 5

1 a Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA
2 b Department of Mathematics and Statistics, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
3 c Department of Mathematics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
4 d Department of Mathematics, University of Missouri, Columbia, MO 65211, USA
5 e Department of Mathematics, Miami University, Oxford, OH 45056, USA
@article{AIHPC_2021__38_2_421_0,
     author = {Beck, Margaret and Cox, Graham and Jones, Christopher and Latushkin, Yuri and Sukhtayev, Alim},
     title = {A dynamical approach to semilinear elliptic equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {421--450},
     publisher = {Elsevier},
     volume = {38},
     number = {2},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.08.001},
     mrnumber = {4211992},
     zbl = {1459.35174},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.001/}
}
TY  - JOUR
AU  - Beck, Margaret
AU  - Cox, Graham
AU  - Jones, Christopher
AU  - Latushkin, Yuri
AU  - Sukhtayev, Alim
TI  - A dynamical approach to semilinear elliptic equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 421
EP  - 450
VL  - 38
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.001/
DO  - 10.1016/j.anihpc.2020.08.001
LA  - en
ID  - AIHPC_2021__38_2_421_0
ER  - 
%0 Journal Article
%A Beck, Margaret
%A Cox, Graham
%A Jones, Christopher
%A Latushkin, Yuri
%A Sukhtayev, Alim
%T A dynamical approach to semilinear elliptic equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 421-450
%V 38
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.001/
%R 10.1016/j.anihpc.2020.08.001
%G en
%F AIHPC_2021__38_2_421_0
Beck, Margaret; Cox, Graham; Jones, Christopher; Latushkin, Yuri; Sukhtayev, Alim. A dynamical approach to semilinear elliptic equations. Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 421-450. doi : 10.1016/j.anihpc.2020.08.001. http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.001/

[1] Kapitula, T.; Promislow, K. Spectral and Dynamical Stability of Nonlinear Waves, Applied Mathematical Sciences, vol. 185, Springer, New York, 2013 (with a foreword by Christopher K.R.T. Jones) | DOI | MR | Zbl

[2] Amick, C.J. Semilinear elliptic eigenvalue problems on an infinite strip with an application to stratified fluids, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 11 (1984) no. 3, pp. 441-499 | Numdam | MR | Zbl

[3] Beck, M.; Sandstede, B.; Zumbrun, K. Nonlinear stability of time-periodic viscous shocks, Arch. Ration. Mech. Anal., Volume 196 (2010) no. 3, pp. 1011-1076 | DOI | MR | Zbl

[4] Doelman, A.; Sandstede, B.; Scheel, A.; Schneider, G. The dynamics of modulated wave trains, Mem. Am. Math. Soc., Volume 199 (2009) no. 934 (viii+105) | DOI | MR | Zbl

[5] Gardner, R. Existence of multidimensional travelling wave solutions of an initial-boundary value problem, J. Differ. Equ., Volume 61 (1986) no. 3, pp. 335-379 | DOI | MR | Zbl

[6] Kirchgässner, K. Wave-solutions of reversible systems and applications, J. Differ. Equ., Volume 45 (1982) no. 1, pp. 113-127 | DOI | MR | Zbl

[7] Latushkin, Y.; Pogan, A. The dichotomy theorem for evolution bi-families, J. Differ. Equ., Volume 245 (2008) no. 8, pp. 2267-2306 | DOI | MR | Zbl

[8] Mielke, A. A reduction principle for nonautonomous systems in infinite-dimensional spaces, J. Differ. Equ., Volume 65 (1986) no. 1, pp. 68-88 | DOI | MR | Zbl

[9] Mielke, A. Reduction of quasilinear elliptic equations in cylindrical domains with applications, Math. Methods Appl. Sci., Volume 10 (1988) no. 1, pp. 51-66 | DOI | MR | Zbl

[10] Mielke, A. Locally invariant manifolds for quasilinear parabolic equations, Rocky Mt. J. Math., Volume 21 (1991) no. 2, pp. 707-714 current directions in nonlinear partial differential equations (Provo, UT, 1987) | DOI | MR | Zbl

[11] Peterhof, D.; Sandstede, B.; Scheel, A. Exponential dichotomies for solitary-wave solutions of semilinear elliptic equations on infinite cylinders, J. Differ. Equ., Volume 140 (1997) no. 2, pp. 266-308 | DOI | MR | Zbl

[12] Sandstede, B. (Handbook of Dynamical Systems), Volume vol. 2, North-Holland, Amsterdam (2002), pp. 983-1055 | DOI | MR | Zbl

[13] Sandstede, B.; Scheel, A. On the structure of spectra of modulated travelling waves, Math. Nachr., Volume 232 (2001), pp. 39-93 | DOI | MR | Zbl

[14] Scheel, A. Radially symmetric patterns of reaction-diffusion systems, Mem. Am. Math. Soc., Volume 165 (2003) no. 786 (viii+86) | DOI | MR | Zbl

[15] Milnor, J. Morse Theory, Annals of Mathematics Studies, vol. 51, Princeton University Press, Princeton, N.J., 1963 | MR | Zbl

[16] ElBialy, M.S. Stable and unstable manifolds for hyperbolic bi-semigroups, J. Funct. Anal., Volume 262 (2012) no. 5, pp. 2516-2560 | DOI | MR | Zbl

[17] Gallay, T. A center-stable manifold theorem for differential equations in Banach spaces, Commun. Math. Phys., Volume 152 (1993) no. 2, pp. 249-268 | DOI | MR | Zbl

[18] Colding, T.H.; Minicozzi, W.P. II Level set method for motion by mean curvature, Not. Am. Math. Soc., Volume 63 (2016) no. 10, pp. 1148-1153 | DOI | MR | Zbl

[19] Colding, T.H.; Minicozzi, W.P. II A Course in Minimal Surfaces, Graduate Studies in Mathematics, vol. 121, American Mathematical Society, Providence, RI, 2011 | DOI | MR | Zbl

[20] Chavel, I. Riemannian Geometry, Riemannian Geometry, Cambridge Studies in Advanced Mathematics, vol. 98, Cambridge University Press, Cambridge, 2006 (a modern introduction) | DOI | MR | Zbl

[21] Evans, L.C.; Gariepy, R.F. Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992 | MR | Zbl

[22] Kolmogorov, A. Über Kompaktheit der Funktionenmengen bei der Konvergenz im Mittel, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, Weidmannsche Buchhandlung, Berlin, 1931, pp. 60-63 | JFM | Zbl

[23] Wloka, J. Partial Differential Equations, Cambridge University Press, Cambridge, 1987 | DOI | MR | Zbl

[24] McLean, W. Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000 | MR | Zbl

[25] Cox, G.; Jones, C.K.R.T.; Marzuola, J.L. A Morse index theorem for elliptic operators on bounded domains, Commun. Partial Differ. Equ., Volume 40 (2015) no. 8, pp. 1467-1497 | DOI | MR | Zbl

[26] Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011 | DOI | MR | Zbl

[27] M. Beck, G. Cox, C. Jones, Y. Latushkin, a. Sukhtayev, Exponential dichotomies for elliptic PDE on radial domains, preprint, 2019.

[28] Cox, G.; Jones, C.K.R.T.; Latushkin, Y.; Sukhtayev, A. The Morse and Maslov indices for multidimensional Schrödinger operators with matrix-valued potentials, Trans. Am. Math. Soc., Volume 368 (2016) no. 11, pp. 8145-8207 | DOI | MR | Zbl

[29] Deng, J.; Nii, S. Infinite-dimensional Evans function theory for elliptic eigenvalue problems in a channel, J. Differ. Equ., Volume 225 (2006) no. 1, pp. 57-89 | DOI | MR | Zbl

[30] Deng, J.; Nii, S. An infinite-dimensional Evans function theory for elliptic boundary value problems, J. Differ. Equ., Volume 244 (2008) no. 4, pp. 753-765 | DOI | MR | Zbl

[31] Gesztesy, F.; Latushkin, Y.; Zumbrun, K. Derivatives of (modified) Fredholm determinants and stability of standing and traveling waves, J. Math. Pures Appl. (9), Volume 90 (2008) no. 2, pp. 160-200 | DOI | MR | Zbl

[32] Latushkin, Y.; Pogan, A. The infinite dimensional Evans function, J. Funct. Anal., Volume 268 (2015) no. 6, pp. 1509-1586 | DOI | MR | Zbl

[33] Oh, M.; Sandstede, B. Evans functions for periodic waves on infinite cylindrical domains, J. Differ. Equ., Volume 248 (2010) no. 3, pp. 544-555 | DOI | MR | Zbl

[34] Deng, J.; Jones, C. Multi-dimensional Morse index theorems and a symplectic view of elliptic boundary value problems, Trans. Am. Math. Soc., Volume 363 (2011) no. 3, pp. 1487-1508 | DOI | MR | Zbl

[35] Latushkin, Y.; Sukhtaiev, S. The Maslov index and the spectra of second order elliptic operators, Adv. Math., Volume 329 (2018), pp. 422-486 | DOI | MR | Zbl

Cité par Sources :