A characterization of a semilinear elliptic partial differential equation (PDE) on a bounded domain in is given in terms of an infinite-dimensional dynamical system. The dynamical system is on the space of boundary data for the PDE. This is a novel approach to elliptic problems that enables the use of dynamical systems tools in studying the corresponding PDE. The dynamical system is ill-posed, meaning solutions do not exist forwards or backwards in time for generic initial data. We offer a framework in which this ill-posed system can be analyzed. This can be viewed as generalizing the theory of spatial dynamics, which applies to the case of an infinite cylindrical domain.
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.08.001
Mots-clés : Semilinear equations, Spatial dynamics, Dynamical systems
@article{AIHPC_2021__38_2_421_0, author = {Beck, Margaret and Cox, Graham and Jones, Christopher and Latushkin, Yuri and Sukhtayev, Alim}, title = {A dynamical approach to semilinear elliptic equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {421--450}, publisher = {Elsevier}, volume = {38}, number = {2}, year = {2021}, doi = {10.1016/j.anihpc.2020.08.001}, mrnumber = {4211992}, zbl = {1459.35174}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.001/} }
TY - JOUR AU - Beck, Margaret AU - Cox, Graham AU - Jones, Christopher AU - Latushkin, Yuri AU - Sukhtayev, Alim TI - A dynamical approach to semilinear elliptic equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 421 EP - 450 VL - 38 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.001/ DO - 10.1016/j.anihpc.2020.08.001 LA - en ID - AIHPC_2021__38_2_421_0 ER -
%0 Journal Article %A Beck, Margaret %A Cox, Graham %A Jones, Christopher %A Latushkin, Yuri %A Sukhtayev, Alim %T A dynamical approach to semilinear elliptic equations %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 421-450 %V 38 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.001/ %R 10.1016/j.anihpc.2020.08.001 %G en %F AIHPC_2021__38_2_421_0
Beck, Margaret; Cox, Graham; Jones, Christopher; Latushkin, Yuri; Sukhtayev, Alim. A dynamical approach to semilinear elliptic equations. Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 421-450. doi : 10.1016/j.anihpc.2020.08.001. http://www.numdam.org/articles/10.1016/j.anihpc.2020.08.001/
[1] Spectral and Dynamical Stability of Nonlinear Waves, Applied Mathematical Sciences, vol. 185, Springer, New York, 2013 (with a foreword by Christopher K.R.T. Jones) | DOI | MR | Zbl
[2] Semilinear elliptic eigenvalue problems on an infinite strip with an application to stratified fluids, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (4), Volume 11 (1984) no. 3, pp. 441-499 | Numdam | MR | Zbl
[3] Nonlinear stability of time-periodic viscous shocks, Arch. Ration. Mech. Anal., Volume 196 (2010) no. 3, pp. 1011-1076 | DOI | MR | Zbl
[4] The dynamics of modulated wave trains, Mem. Am. Math. Soc., Volume 199 (2009) no. 934 (viii+105) | DOI | MR | Zbl
[5] Existence of multidimensional travelling wave solutions of an initial-boundary value problem, J. Differ. Equ., Volume 61 (1986) no. 3, pp. 335-379 | DOI | MR | Zbl
[6] Wave-solutions of reversible systems and applications, J. Differ. Equ., Volume 45 (1982) no. 1, pp. 113-127 | DOI | MR | Zbl
[7] The dichotomy theorem for evolution bi-families, J. Differ. Equ., Volume 245 (2008) no. 8, pp. 2267-2306 | DOI | MR | Zbl
[8] A reduction principle for nonautonomous systems in infinite-dimensional spaces, J. Differ. Equ., Volume 65 (1986) no. 1, pp. 68-88 | DOI | MR | Zbl
[9] Reduction of quasilinear elliptic equations in cylindrical domains with applications, Math. Methods Appl. Sci., Volume 10 (1988) no. 1, pp. 51-66 | DOI | MR | Zbl
[10] Locally invariant manifolds for quasilinear parabolic equations, Rocky Mt. J. Math., Volume 21 (1991) no. 2, pp. 707-714 current directions in nonlinear partial differential equations (Provo, UT, 1987) | DOI | MR | Zbl
[11] Exponential dichotomies for solitary-wave solutions of semilinear elliptic equations on infinite cylinders, J. Differ. Equ., Volume 140 (1997) no. 2, pp. 266-308 | DOI | MR | Zbl
[12] (Handbook of Dynamical Systems), Volume vol. 2, North-Holland, Amsterdam (2002), pp. 983-1055 | DOI | MR | Zbl
[13] On the structure of spectra of modulated travelling waves, Math. Nachr., Volume 232 (2001), pp. 39-93 | DOI | MR | Zbl
[14] Radially symmetric patterns of reaction-diffusion systems, Mem. Am. Math. Soc., Volume 165 (2003) no. 786 (viii+86) | DOI | MR | Zbl
[15] Morse Theory, Annals of Mathematics Studies, vol. 51, Princeton University Press, Princeton, N.J., 1963 | MR | Zbl
[16] Stable and unstable manifolds for hyperbolic bi-semigroups, J. Funct. Anal., Volume 262 (2012) no. 5, pp. 2516-2560 | DOI | MR | Zbl
[17] A center-stable manifold theorem for differential equations in Banach spaces, Commun. Math. Phys., Volume 152 (1993) no. 2, pp. 249-268 | DOI | MR | Zbl
[18] Level set method for motion by mean curvature, Not. Am. Math. Soc., Volume 63 (2016) no. 10, pp. 1148-1153 | DOI | MR | Zbl
[19] A Course in Minimal Surfaces, Graduate Studies in Mathematics, vol. 121, American Mathematical Society, Providence, RI, 2011 | DOI | MR | Zbl
[20] Riemannian Geometry, Riemannian Geometry, Cambridge Studies in Advanced Mathematics, vol. 98, Cambridge University Press, Cambridge, 2006 (a modern introduction) | DOI | MR | Zbl
[21] Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992 | MR | Zbl
[22] Über Kompaktheit der Funktionenmengen bei der Konvergenz im Mittel, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen, Mathematisch-Physikalische Klasse, Weidmannsche Buchhandlung, Berlin, 1931, pp. 60-63 | JFM | Zbl
[23] Partial Differential Equations, Cambridge University Press, Cambridge, 1987 | DOI | MR | Zbl
[24] Strongly Elliptic Systems and Boundary Integral Equations, Cambridge University Press, Cambridge, 2000 | MR | Zbl
[25] A Morse index theorem for elliptic operators on bounded domains, Commun. Partial Differ. Equ., Volume 40 (2015) no. 8, pp. 1467-1497 | DOI | MR | Zbl
[26] Functional Analysis, Sobolev Spaces and Partial Differential Equations, Universitext, Springer, New York, 2011 | DOI | MR | Zbl
[27] M. Beck, G. Cox, C. Jones, Y. Latushkin, a. Sukhtayev, Exponential dichotomies for elliptic PDE on radial domains, preprint, 2019.
[28] The Morse and Maslov indices for multidimensional Schrödinger operators with matrix-valued potentials, Trans. Am. Math. Soc., Volume 368 (2016) no. 11, pp. 8145-8207 | DOI | MR | Zbl
[29] Infinite-dimensional Evans function theory for elliptic eigenvalue problems in a channel, J. Differ. Equ., Volume 225 (2006) no. 1, pp. 57-89 | DOI | MR | Zbl
[30] An infinite-dimensional Evans function theory for elliptic boundary value problems, J. Differ. Equ., Volume 244 (2008) no. 4, pp. 753-765 | DOI | MR | Zbl
[31] Derivatives of (modified) Fredholm determinants and stability of standing and traveling waves, J. Math. Pures Appl. (9), Volume 90 (2008) no. 2, pp. 160-200 | DOI | MR | Zbl
[32] The infinite dimensional Evans function, J. Funct. Anal., Volume 268 (2015) no. 6, pp. 1509-1586 | DOI | MR | Zbl
[33] Evans functions for periodic waves on infinite cylindrical domains, J. Differ. Equ., Volume 248 (2010) no. 3, pp. 544-555 | DOI | MR | Zbl
[34] Multi-dimensional Morse index theorems and a symplectic view of elliptic boundary value problems, Trans. Am. Math. Soc., Volume 363 (2011) no. 3, pp. 1487-1508 | DOI | MR | Zbl
[35] The Maslov index and the spectra of second order elliptic operators, Adv. Math., Volume 329 (2018), pp. 422-486 | DOI | MR | Zbl
Cité par Sources :