Relaxed Euler systems and convergence to Navier-Stokes equations
Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 369-401.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We consider the approximation of Navier-Stokes equations for a Newtonian fluid by Euler type systems with relaxation both in compressible and incompressible cases. This requires to decompose the second-order derivative terms of the velocity into first-order ones. Usual decompositions lead to approximate systems with tensor variables. We construct approximate systems with vector variables by using Hurwitz-Radon matrices. These systems are written in the form of balance laws and admit strictly convex entropies, so that they are symmetrizable hyperbolic. For smooth solutions, we prove the convergence of the approximate systems to the Navier-Stokes equations in uniform time intervals. Global-in-time convergence is also shown for the initial data near constant equilibrium states of the systems. These convergence results are established not only for the approximate systems with vector variables but also for those with tensor variables.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.07.007
Classification : 35L45, 35L60, 35L65, 35Q30, 35Q31
Mots-clés : Compressible and incompressible Navier-Stokes equations, Newtonian fluid, Relaxed Euler systems, Local and global convergence
Peng, Yue-Jun 1

1 Université Clermont Auvergne, CNRS, Laboratoire de Mathématiques Blaise Pascal, 63000 Clermont-Ferrand, France
@article{AIHPC_2021__38_2_369_0,
     author = {Peng, Yue-Jun},
     title = {Relaxed {Euler} systems and convergence to {Navier-Stokes} equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {369--401},
     publisher = {Elsevier},
     volume = {38},
     number = {2},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.07.007},
     mrnumber = {4211990},
     zbl = {1458.35319},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.007/}
}
TY  - JOUR
AU  - Peng, Yue-Jun
TI  - Relaxed Euler systems and convergence to Navier-Stokes equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 369
EP  - 401
VL  - 38
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.007/
DO  - 10.1016/j.anihpc.2020.07.007
LA  - en
ID  - AIHPC_2021__38_2_369_0
ER  - 
%0 Journal Article
%A Peng, Yue-Jun
%T Relaxed Euler systems and convergence to Navier-Stokes equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 369-401
%V 38
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.007/
%R 10.1016/j.anihpc.2020.07.007
%G en
%F AIHPC_2021__38_2_369_0
Peng, Yue-Jun. Relaxed Euler systems and convergence to Navier-Stokes equations. Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 369-401. doi : 10.1016/j.anihpc.2020.07.007. http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.007/

[1] Adams, J.F.; Lax, P.D.; Phillips, R.S. On matrices whose real linear combinations are non-singular, Proc. Am. Math. Soc., Volume 16 (1965), pp. 318-322 | MR | Zbl

[2] Boillat, G. Sur l'existence et la recherche d'équations de conservation supplémentaires pour les systèmes hyperboliques, C. R. Acad. Sci. Paris, Sér. A, Volume 278 (1974), pp. 909-912 | MR | Zbl

[3] Brenier, Y.; Natalini, R.; Puel, M. On a relaxation approximation of the incompressible Navier-Stokes equations, Proc. Am. Math. Soc., Volume 132 (2004), pp. 1021-1028 | DOI | MR | Zbl

[4] Brenier, Y.; Yong, W.A. Derivation of particle, string, and membrane motions from the Born-Infeld electromagnetism, J. Math. Phys., Volume 46 (2005) no. 6 | DOI | MR | Zbl

[5] Bresch, D.; Prange, C. Newtonian limit for weakly viscoelastic fluid flows, SIAM J. Math. Anal., Volume 46 (2014) no. 2, pp. 1116-1159 | DOI | MR | Zbl

[6] Cattaneo, C. Sulla conduzione del calore, Atti Semin. Mat. Fis. Univ. Modena, Volume 3 (1948), pp. 83-101 | MR | Zbl

[7] Cattaneo, C. Sur une forme de l'équation de la chaleur éliminant le paradoxe d'une propagation instantanée, C. R. Acad. Sci. Paris, Volume 247 (1958), pp. 431-433 | MR | Zbl

[8] Eckmann, B. Hurwitz-Radon matrices revisited: from effective solution of the Hurwitz matrix equations to Bott periodicity, Montreal, PQ (CRM Proc. Lecture Notes), Volume vol. 6, Amer. Math. Soc., Providence, RI (1994), pp. 23-35 | DOI | MR | Zbl

[9] Feireisl, E. Dynamics of Viscous Compressible Fluids, Oxford Lecture Series in Mathematics and Its Applications, vol. 26, Oxford University Press, Oxford, 2004 | MR | Zbl

[10] Fernández, S.; Hugo, D.; Racke, R. On the stability of damped Timoshenko systems: Cattaneo versus Fourier law, Arch. Ration. Mech. Anal., Volume 194 (2009) no. 1, pp. 221-251 | DOI | MR | Zbl

[11] Friedrichs, K.O.; Lax, P.D. Systems of conservation equations with a convex extension, Proc. Natl. Acad. Sci. USA, Volume 68 (1971), pp. 1686-1688 | DOI | MR | Zbl

[12] Godunov, S.K. An interesting class of quasi-linear systems, Dokl. Akad. Nauk SSSR, Volume 139 (1961), pp. 521-523 (Russian) | MR | Zbl

[13] Hu, Y.X.; Racke, R. Compressible Navier-Stokes equations with hyperbolic heat conduction, J. Hyperbolic Differ. Equ., Volume 13 (2016), pp. 233-247 | DOI | MR | Zbl

[14] Hu, Y.X.; Racke, R. Compressible Navier-Stokes equations with revised Maxwell's law, J. Math. Fluid Mech., Volume 19 (2017), pp. 77-90 | DOI | MR | Zbl

[15] Hurwitz, A. Über die Komposition der quadratischen Formen, Math. Ann., Volume 88 (1923) no. 1–2, pp. 1-25 | JFM | MR

[16] Kato, T. (Lecture Notes in Math.), Volume vol. 448, Springer (1975), pp. 25-70 | MR | Zbl

[17] Kato, T. The Cauchy problem for quasilinear symmetric hyperbolic systems, Arch. Ration. Mech. Anal., Volume 58 (1975), pp. 181-205 | DOI | MR | Zbl

[18] Lawson, H.B.; Michelsohn, M.-L. Spin Geometry, Princeton Math. Series, vol. 38, Princeton University Press, Princeton, NJ, 1989 (427 pp) | MR | Zbl

[19] Lax, P.D. Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves, SIAM Regional Conf. Lecture, vol. 11, 1973 (Philadelphia) | MR | Zbl

[20] Lichtenstein, L. Über einige existenz probleme der hydrodynamik, homogener, unzusammendrückbarer, reibungsloser flüssigkeiten und die Helmholtzschen wirbelsätze, Math. Z., Volume 23 (1925), pp. 89-154 | DOI | JFM | MR

[21] Lions, P.L. Mathematical Topics in Fluid Mechanics. Vol. 1. Incompressible Models, Oxford Lecture Series in Mathematics and Its Applications, vol. 3, Oxford Science Publications, the Clarendon Press, Oxford University Press, New York, 1996 | Zbl

[22] Majda, A. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables, Applied Mathematical Sciences, vol. 53, Springer-Verlag, New York, 1984 (159 pp) | MR | Zbl

[23] Majda, A.; Bertozzi, A. Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, vol. 27, Cambridge University Press, Cambridge, 2002 (545 pp) | MR | Zbl

[24] Masmoudi, N., Elsevier/North-Holland, Amsterdam (2007), pp. 195-275 | MR | Zbl

[25] Matsumura, A.; Nishida, T. The initial value problem for the equations of motion of viscous and heat conductive gases, J. Math. Kyoto Univ., Volume 20 (1980), pp. 67-104 | MR | Zbl

[26] Maxwell, J.C. On the dynamical theory of gases, Philos. Trans. R. Soc. Lond., Volume 147 (1867), pp. 49-88

[27] Miranville, A.; Quintanilla, R. On a phase-field system based on the Cattaneo law, Nonlinear Anal., Volume 75 (2012) no. 4, pp. 2552-2565 | DOI | MR | Zbl

[28] Molinet, L.; Talhouk, R. Newtonian limit for weakly viscoelastic fluid flows of Oldroyd type, SIAM J. Math. Anal., Volume 39 (2008) no. 5, pp. 1577-1594 | DOI | MR | Zbl

[29] Nishida, T. Nonlinear Hyperbolic Equations and Related Topics in Fluids Dynamics, Publications Mathématiques d'Orsay, vol. 78-02, Université Paris-Sud, Orsay, 1978 | MR | Zbl

[30] Paicu, M.; Raugel, G. Une perturbation hyperbolique des équations de Navier-Stokes, ESAIM Proceedings, Journées d'Analyse Fonctionnelle et Numérique en l'honneur de Michel Crouzeix, vol. 21, EDP Sci. Les, Ulis, 2007, pp. 65-87 | DOI | MR | Zbl

[31] Peng, Y.J.; Wasiolek, V. Parabolic limits with differential constraints of first-order quasilinear hyperbolic systems, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2016) no. 4, pp. 1103-1130 | DOI | Numdam | MR | Zbl

[32] Peng, Y.J.; Wasiolek, V. Uniform global existence and parabolic limit for partially dissipative hyperbolic systems, J. Differ. Equ., Volume 260 (2016) no. 9, pp. 7059-7092 | DOI | MR | Zbl

[33] Radon, J. Lineare scharen orthogonaler matrizen, Abh. Math. Semin. Univ. Hamb., Volume 1 (1922), pp. 1-14 | DOI | JFM | MR

[34] Said-Houari, B.; Hamadouche, T. The asymptotic behavior of the Bresse-Cattaneo system, Commun. Contemp. Math., Volume 18 (2016) no. 4 | DOI | MR | Zbl

[35] Said-Houari, B.; Kasimov, A. Damping by heat conduction in the Timoshenko system: Fourier and Cattaneo are the same, J. Differ. Equ., Volume 255 (2013) no. 4, pp. 611-632 | DOI | MR | Zbl

[36] Saut, J.C. Some remarks on the limit of viscoelastic fluids as the relaxation time tends to zero, Bad Honnef, 1985 (Lecture Notes in Phys.), Volume vol. 249, Springer, Berlin (1986), pp. 364-369 | DOI | MR | Zbl

[37] Simon, J. Compact sets in the space Lp(0,T;B) , Ann. Mat. Pura Appl. (4), Volume CXLVI (1987), pp. 65-96 | MR | Zbl

[38] Tao, T. Nonlinear Dispersive Equations. Local and Global Analysis, CBMS Reg. Conf. Ser. Math., vol. 106, AMS, Providence, RI, 2006 | MR | Zbl

[39] Yong, W.A. Newtonian limit of Maxwell fluid flows, Arch. Ration. Mech. Anal., Volume 214 (2014), pp. 913-922 | DOI | MR | Zbl

Cité par Sources :