Dans cet article, nous considérons la contrôlabilité d'un système linéaire avec des contrôles positifs. Malgré la condition du rang de Kalman, la condition de positivité des contrôles peut conduire à l'existence d'un temps minimal de contrôlabilité strictement positif. Lorsque tel est le cas, nous démontrons que si la matrice du système de contrôle possède une valeur propre réelle, alors il existe dans l'espace des mesures de Radon positives, un contrôle en le temps minimal et ce contrôle est nécessairement une somme finie de masse de Dirac. De plus, lorsque toutes les valeurs propres de la matrice sont réelles, ce contrôle est unique et le nombre de masses de Dirac le constituant est d'au plus la moitié de la dimension de l'espace d'état. Nous particularisons ces résultats sur l'exemple de l'équation de la chaleur unidimensionnelle, avec des contrôles frontières de type Dirichlet, discrétisée en espace et nous proposons quelques simulations numériques.
We consider the controllability problem for finite-dimensional linear autonomous control systems with nonnegative controls. Despite the Kalman condition, the unilateral nonnegativity control constraint may cause a positive minimal controllability time. When this happens, we prove that, if the matrix of the system has a real eigenvalue, then there is a minimal time control in the space of Radon measures, which consists of a finite sum of Dirac impulses. When all eigenvalues are real, this control is unique and the number of impulses is less than half the dimension of the space. We also focus on the control system corresponding to a finite-difference spatial discretization of the one-dimensional heat equation with Dirichlet boundary controls, and we provide numerical simulations.
Mots-clés : Temps minimal, Contrôles positifs, Impulsions de Dirac
@article{AIHPC_2021__38_2_301_0, author = {Loh\'eac, J\'er\^ome and Tr\'elat, Emmanuel and Zuazua, Enrique}, title = {Nonnegative control of finite-dimensional linear systems}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {301--346}, publisher = {Elsevier}, volume = {38}, number = {2}, year = {2021}, doi = {10.1016/j.anihpc.2020.07.004}, mrnumber = {4211988}, zbl = {1466.93020}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.004/} }
TY - JOUR AU - Lohéac, Jérôme AU - Trélat, Emmanuel AU - Zuazua, Enrique TI - Nonnegative control of finite-dimensional linear systems JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 301 EP - 346 VL - 38 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.004/ DO - 10.1016/j.anihpc.2020.07.004 LA - en ID - AIHPC_2021__38_2_301_0 ER -
%0 Journal Article %A Lohéac, Jérôme %A Trélat, Emmanuel %A Zuazua, Enrique %T Nonnegative control of finite-dimensional linear systems %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 301-346 %V 38 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.004/ %R 10.1016/j.anihpc.2020.07.004 %G en %F AIHPC_2021__38_2_301_0
Lohéac, Jérôme; Trélat, Emmanuel; Zuazua, Enrique. Nonnegative control of finite-dimensional linear systems. Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 301-346. doi : 10.1016/j.anihpc.2020.07.004. http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.004/
[1] Measure and Integration Theory, De Gruyter Studies in Mathematics, vol. 26, Walter de Gruyter & Co., Berlin, 2001 (Translated from the German by Robert B. Burckel xvi+230 pp) | MR | Zbl
[2] Nonnegative Matrices in the Mathematical Sciences, SIAM, Philadelphia, PA, 1994 | DOI | MR | Zbl
[3] Practical Methods for Optimal Control and Estimation Using Nonlinear Programming, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2010 | MR | Zbl
[4] Techniques of Variational Analysis, Springer, New York, NY, 2005 | MR | Zbl
[5] On differential systems with vector-valued impulsive controls, Boll. Unione Mat. Ital., B (7), Volume 2 (1988) no. 3, pp. 641-656 | MR | Zbl
[6] An algorithm for indefinite quadratic programming based on a partial Cholesky factorization, RAIRO. Rech. Opér., Volume 27 (1993) no. 4, pp. 401-426 | DOI | Numdam | MR | Zbl
[7] Control and Nonlinearity, American Mathematical Society (AMS), Providence, RI, 2007 | MR | Zbl
[8] Global steady-state controllability of one-dimensional semilinear heat equations, SIAM J. Control Optim., Volume 43 (2004) no. 2, pp. 549-569 | DOI | MR | Zbl
[9] Global steady-state stabilization and controllability of 1D semilinear wave equations, Commun. Contemp. Math., Volume 8 (2006) no. 4, pp. 535-567 | DOI | MR | Zbl
[10] On systems of ordinary differential equations with measures as controls, Differ. Integral Equ., Volume 4 (1991) no. 4, pp. 739-765 | MR | Zbl
[11] The generalized simplex method for minimizing a linear form under linear inequality restraints, Pac. J. Math., Volume 5 (1955), pp. 183-195 | DOI | MR | Zbl
[12] Convex Analysis and Variational Problems, Studies in Mathematics and Its Applications, vol. 1, North-Holland Publishing Company, American Elsevier Publishing Company, Inc. IX, Amsterdam, Oxford, New York, 1976 (Translated by Minerva Translations, Ltd., London 402 pp) | MR | Zbl
[13] A modeling language for mathematical programming, Manag. Sci., Volume 36 (1990) no. 5, pp. 519-554 | DOI | Zbl
[14] Controllability of linear systems with input and state constraints, Proc. IEEE CDC'07, 2007
[15] On the constrained small-time controllability of linear systems, Automatica, Volume 44 (2008) no. 9, pp. 2370-2374 | DOI | MR | Zbl
[16] Minimal time problem with impulsive controls, Appl. Math. Optim., Volume 75 (2017) no. 1, pp. 75-97 | DOI | MR | Zbl
[17] Foundations of Optimal Control Theory, The SIAM Series in Applied Mathematics, vol. XII, John Wiley and Sons, Inc., New York, London, Sydney, 1967 (576 pp) | MR | Zbl
[18] Coordinate descent optimization for minimization with application to compressed sensing, a greedy algorithm, Inverse Probl. Imaging, Volume 3 (2009) no. 3, pp. 487-503 | DOI | MR | Zbl
[19] Heat source identification based on constrained minimization, Inverse Probl. Imaging, Volume 8 (2014) no. 1, pp. 199-221 | DOI | MR | Zbl
[20] Minimal controllability time for the heat equation under unilateral state or control constraints, Math. Models Methods Appl. Sci., Volume 27 (2017) no. 09, pp. 1587-1644 | DOI | MR | Zbl
[21] Minimal controllability time for finite-dimensional control systems under state constraints, Automatica, Volume 96 (2018), pp. 380-392 | DOI | MR | Zbl
[22] Normality and gap phenomena in optimal unbounded control, ESAIM Control Optim. Calc. Var., Volume 24 (2018) no. 4, pp. 1645-1673 | DOI | Numdam | MR | Zbl
[23] Controllability under positivity constraints of semilinear heat equations, Math. Control Relat. Fields, Volume 8 (2018) no. 3–4, pp. 935-964 | DOI | MR | Zbl
[24] An extended Pontryagin principle for control systems whose control laws contain measures, J. Soc. Ind. Appl. Math., A, on Control, Volume 3 (1965), pp. 191-205 | DOI | MR | Zbl
[25] How violent are fast controls?, Math. Control Signals Syst., Volume 1 (1988) no. 1, pp. 89-95 | DOI | MR | Zbl
[26] How violent are fast controls? II, Math. Control Signals Syst., Volume 9 (1996) no. 4, pp. 327-340 | DOI | MR | Zbl
[27] How violent are fast controls. III, J. Math. Anal. Appl., Volume 339 (2008) no. 1, pp. 461-468 | DOI | MR | Zbl
[28] Contrôle optimal. Théorie et applications, Vuibert, Paris, 2005 | MR | Zbl
[29] Optimal control and applications to aerospace: some results and challenges, J. Optim. Theory Appl., Volume 154 (2012) no. 3, pp. 713-758 | DOI | MR | Zbl
[30] On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming, Math. Program., Volume 106 (2006) no. 1(A), pp. 25-57 | DOI | MR | Zbl
Cité par Sources :