On isolated singularities of fractional semi-linear elliptic equations
Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 403-420.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

In this paper, we study the local behavior of nonnegative solutions of fractional semi-linear equations (Δ)σu=up with an isolated singularity, where σ(0,1) and nn2σ<p<n+2σn2σ. We first use the blow up method and a Liouville type theorem to derive an upper bound. Then we establish a monotonicity formula and a sufficient condition for removable singularity to give a classification of the isolated singularities. When σ=1, this classification result has been proved by Gidas and Spruck (1981) [23], Caffarelli et al. (1989) [7].

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.07.003
Classification : 35B09, 35B40, 35J70, 35R11
Mots-clés : Isolated singularities, Monotonicity formula, Positive solutions, Fractional semi-linear elliptic equations
Yang, Hui 1 ; Zou, Wenming 2

1 a Yau Mathematical Sciences Center, Tsinghua University, Beijing 100084, China
2 b Department of Mathematical Sciences, Tsinghua University, Beijing 100084, China
@article{AIHPC_2021__38_2_403_0,
     author = {Yang, Hui and Zou, Wenming},
     title = {On isolated singularities of fractional semi-linear elliptic equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {403--420},
     publisher = {Elsevier},
     volume = {38},
     number = {2},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.07.003},
     mrnumber = {4211991},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.003/}
}
TY  - JOUR
AU  - Yang, Hui
AU  - Zou, Wenming
TI  - On isolated singularities of fractional semi-linear elliptic equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 403
EP  - 420
VL  - 38
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.003/
DO  - 10.1016/j.anihpc.2020.07.003
LA  - en
ID  - AIHPC_2021__38_2_403_0
ER  - 
%0 Journal Article
%A Yang, Hui
%A Zou, Wenming
%T On isolated singularities of fractional semi-linear elliptic equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 403-420
%V 38
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.003/
%R 10.1016/j.anihpc.2020.07.003
%G en
%F AIHPC_2021__38_2_403_0
Yang, Hui; Zou, Wenming. On isolated singularities of fractional semi-linear elliptic equations. Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 403-420. doi : 10.1016/j.anihpc.2020.07.003. http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.003/

[1] Ao, W.; Chan, H.; DelaTorre, A.; Fontelos, M.A.; González, M.; Wei, J. On higher dimensional singularities for the fractional Yamabe problem: a non-local Mazzeo-Pacard program, Duke Math. J., Volume 168 (2019) no. 17, pp. 3297-3411 | MR

[2] Ao, W.; DelaTorre, A.; González, M.; Wei, J. A gluing approach for the fractional Yamabe problem with isolated singularities, J. Reine Angew. Math., Volume 763 (2020), pp. 25-78 | DOI | MR

[3] Ao, W.; Chan, H.; González, M.; Wei, J. Existence of positive weak solutions for fractional Lane-Emden equations with prescribed singular set, Calc. Var. Partial Differ. Equ., Volume 57 (2018) no. 6 | MR

[4] Aviles, P. Local behavior of solutions of some elliptic equations, Commun. Math. Phys., Volume 108 (1987), pp. 177-192 | DOI | MR | Zbl

[5] Bidaut-Véron, M.-F.; Véron, L. Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations, Invent. Math., Volume 106 (1991) no. 3, pp. 489-539 | DOI | MR | Zbl

[6] Cabré, X.; Sire, Y. Nonlinear equations for fractional Laplacians, I: regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 31 (2014), pp. 23-53 | DOI | Numdam | MR | Zbl

[7] Caffarelli, L.; Gidas, B.; Spruck, J. Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Commun. Pure Appl. Math., Volume 42 (1989), pp. 271-297 | DOI | MR | Zbl

[8] Caffarelli, L.; Jin, T.; Sire, Y.; Xiong, J. Local analysis of solutions of fractional semi-linear elliptic equations with isolated singularities, Arch. Ration. Mech. Anal., Volume 213 (2014) no. 1, pp. 245-268 | DOI | MR | Zbl

[9] Caffarelli, L.; Roquejoffre, J.-M.; Savin, O. Nonlocal minimal surfaces, Commun. Pure Appl. Math., Volume 63 (2010), pp. 1111-1144 | DOI | MR | Zbl

[10] Caffarelli, L.; Silvestre, L. An extension problem related to the fractional Laplacian, Commun. Partial Differ. Equ., Volume 32 (2007) no. 8, pp. 1245-1260 | DOI | MR | Zbl

[11] Chang, S.-Y.A.; González, M. Fractional Laplacian in conformal geometry, Adv. Math., Volume 226 (2011), pp. 1410-1432 | DOI | MR | Zbl

[12] Chen, C.-C.; Lin, C.-S. On the asymptotic symmetry of singular solutions of the scalar curvature equations, Math. Ann., Volume 313 (1999), pp. 229-245 | DOI | MR | Zbl

[13] Chen, H.; Quaas, A. Classification of isolated singularities of nonnegative solutions to fractional semi-linear elliptic equations and the existence results, J. Lond. Math. Soc. (2), Volume 97 (2018), pp. 196-221 | DOI | MR

[14] Chen, W.; Li, C.; Li, Y. A direct method of moving planes for the fractional Laplacian, Adv. Math., Volume 308 (2017), pp. 404-437 | DOI | MR

[15] Dávila, J.; Dupaigne, L.; Wei, J. On the fractional Lane-Emden equation, Trans. Am. Math. Soc., Volume 369 (2017), pp. 6087-6104 | DOI | MR

[16] DelaTorre, A.; González, M.d.M. Isolated singularities for a semilinear equation for the fractional Laplacian arising in conformal geometry, Rev. Mat. Iberoam., Volume 34 (2018) no. 4, pp. 1645-1678 | DOI | MR

[17] DelaTorre, A.; del Pino, M.; González, M.d.M.; Wei, J. Delaunay-type singular solutions for the fractional Yamabe problem, Math. Ann., Volume 369 (2017), pp. 597-626 | DOI | MR

[18] Di Nezza, E.; Palatucci, G.; Valdinoci, E. Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., Volume 136 (2012), pp. 521-573 | DOI | MR | Zbl

[19] Fall, M. Semilinear elliptic equations for the fractional Laplacian with Hardy potential | arXiv | DOI

[20] Fall, M.; Felli, V. Unique continuation property and local asymptotics of solutions to fractional elliptic equations, Commun. Partial Differ. Equ., Volume 39 (2014), pp. 354-397 | DOI | MR | Zbl

[21] Fowler, R.H. Further studies of Emden's and similar differential equations, Q. J. Math., Oxf. Ser., Volume 2 (1931), pp. 259-288 | DOI | Zbl

[22] Frank, R.L.; Lenzmann, E.; Silvestre, L. Uniqueness of radial solutions for the fractional Laplacian, Commun. Pure Appl. Math., Volume 69 (2016), pp. 1671-1726 | DOI | MR

[23] Gidas, B.; Spruck, J. Global and local behavior of positive solutions of nonlinear elliptic equations, Commun. Pure Appl. Math., Volume 34 (1981), pp. 525-598 | DOI | MR | Zbl

[24] González, M.d.M.; Mazzeo, R.; Sire, Y. Singular solutions of fractional order conformal Laplacians, J. Geom. Anal., Volume 22 (2012), pp. 845-863 | DOI | MR | Zbl

[25] González, M.d.M.; Qing, J. Fractional conformal Laplacians and fractional Yamabe problems, Anal. PDE, Volume 6 (2013), pp. 1535-1576 | DOI | MR | Zbl

[26] Jin, T.; de Queiroz, O.S.; Sire, Y.; Xiong, J. On local behavior of singular positive solutions to nonlocal elliptic equations, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 1 | MR

[27] Jin, T.; Li, Y.Y.; Xiong, J. On a fractional Nirenberg problem, part I: blow up analysis and compactness of solutions, J. Eur. Math. Soc., Volume 16 (2014), pp. 1111-1171 | DOI | MR | Zbl

[28] Kim, S.; Musso, M.; Wei, J. Existence theorems of the fractional Yamabe problem, Anal. PDE, Volume 11 (2018) no. 1, pp. 75-113 | DOI | MR

[29] Korevaar, N.; Mazzeo, R.; Pacard, F.; Schoen, R. Refined asymptotics for constant scalar curvature metrics with isolated singularities, Invent. Math., Volume 135 (1999) no. 2, pp. 233-272 | DOI | MR | Zbl

[30] Lions, P.-L. Isolated singularities in semilinear problems, J. Differ. Equ., Volume 38 (1980), pp. 441-450 | DOI | MR | Zbl

[31] Poláčik, P.; Quittner, P.; Souplet, Ph. Singularity and decay estimates in superlinear problems via Liouville-type theorems, Duke Math. J., Volume 139 (2007), pp. 555-579 | DOI | MR | Zbl

[32] Serrin, J. Local behavior of solutions of quasi-linear equation, Acta Math., Volume 111 (1964), pp. 247-302 | DOI | MR | Zbl

[33] Terracini, S.; Verzini, G.; Zilio, G. Uniform Hölder bounds for strongly competing systems involving the square root of the Laplacian, J. Eur. Math. Soc., Volume 15 (2016), pp. 2865-2924 | DOI | MR

[34] Wang, K.; Wei, J. On the uniqueness of solutions of a nonlocal elliptic system, Math. Ann., Volume 365 (2016), pp. 105-153 | DOI | MR

Cité par Sources :

This work was supported by NSFC (11771234, 11926323).