The main purpose here is the study of dispersive blow-up for solutions of the Zakharov-Kuznetsov equation. Dispersive blow-up refers to point singularities due to the focusing of short or long waves. We will construct initial data such that solutions of the linear problem present this kind of singularities. Then we show that the corresponding solutions of the nonlinear problem present dispersive blow-up inherited from the linear component part of the equation. Similar results are obtained for the generalized Zakharov-Kuznetsov equation.
Mots-clés : Nonlinear dispersive equations, Zakharov-Kuznetsov equation, Dispersive blow-up
@article{AIHPC_2021__38_2_281_0, author = {Linares, F. and Pastor, A. and Drumond Silva, J.}, title = {Dispersive blow-up for solutions of the {Zakharov-Kuznetsov} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {281--300}, publisher = {Elsevier}, volume = {38}, number = {2}, year = {2021}, doi = {10.1016/j.anihpc.2020.07.002}, mrnumber = {4211987}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.002/} }
TY - JOUR AU - Linares, F. AU - Pastor, A. AU - Drumond Silva, J. TI - Dispersive blow-up for solutions of the Zakharov-Kuznetsov equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 281 EP - 300 VL - 38 IS - 2 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.002/ DO - 10.1016/j.anihpc.2020.07.002 LA - en ID - AIHPC_2021__38_2_281_0 ER -
%0 Journal Article %A Linares, F. %A Pastor, A. %A Drumond Silva, J. %T Dispersive blow-up for solutions of the Zakharov-Kuznetsov equation %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 281-300 %V 38 %N 2 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.002/ %R 10.1016/j.anihpc.2020.07.002 %G en %F AIHPC_2021__38_2_281_0
Linares, F.; Pastor, A.; Drumond Silva, J. Dispersive blow-up for solutions of the Zakharov-Kuznetsov equation. Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 281-300. doi : 10.1016/j.anihpc.2020.07.002. http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.002/
[1] Model equations for long waves in nonlinear, dispersive media, Philos. Trans. R. Soc. Lond. Ser. A, Volume 272 (1972), pp. 47-78 | DOI | MR | Zbl
[2] Global well-posedness for low regularity data in the 2D modified Zakharov-Kuznetov equation | arXiv
[3] Dispersive blow-up for nonlinear Schrödinger equations revisited, J. Math. Pures Appl., Volume 102 (2014), pp. 782-811 | DOI | MR | Zbl
[4] Dispersive blow up of solutions of generalized KdV equations, J. Differ. Equ., Volume 103 (1993), pp. 3-57 | DOI | MR | Zbl
[5] Dispersive blow up II. Schrödinger-type equations, optical and oceanic rogue waves, Chin. Ann. Math., Ser. B, Volume 31 (2010), pp. 793-810 | DOI | MR | Zbl
[6] The Zakharov-Kuznetzov equation in weighted Sobolev spaces, J. Math. Anal. Appl., Volume 433 (2016), pp. 149-175 | DOI | MR
[7] Kato-Ponce inequalities on weighted and variable Lebesgue space, Differ. Integral Equ., Volume 29 (2016), pp. 801-836 | MR
[8] The Cauchy problem for the Zakharov-Kuznetsov equation, Differ. Equ., Volume 31 (1995), pp. 1002-1012 | MR | Zbl
[9] A note on the 2D generalized Zakharov-Kuznetsov equation: local, global and scattering results, J. Differ. Equ., Volume 253 (2011), pp. 2558-2571 | DOI | MR | Zbl
[10] Well-posedness for the two dimensional generalized Zakharov-Kuznetsov equation in anisotropic weighted Sobolev spaces, J. Math. Anal. Appl., Volume 443 (2016), pp. 566-584 | DOI | MR
[11] On the generalized Zakharov-Kuznetsov equation at critical regularity | arXiv
[12] The Fourier restriction norm method for the Zakharov-Kuznetsov equation, Discrete Contin. Dyn. Syst., Volume 34 (2014), pp. 2061-2068 | DOI | MR | Zbl
[13] On dispersive blow-ups for the nonlinear Schrödinger equation, Differ. Integral Equ., Volume 29 (2016), pp. 875-888 | MR
[14] From Vlasov-Poisson to Korteweg-de Vries and Zakharov-Kuznetsov, Commun. Math. Phys., Volume 324 (2013), pp. 961-993 | DOI | MR | Zbl
[15] On the propagation of regularity and decay of solutions to the -generalized Korteweg-de Vries equation, Commun. Partial Differ. Equ., Volume 40 (2015), pp. 1336-1364 | DOI | MR
[16] Commutator estimates and the Euler and Navier-Stokes equations, Commun. Pure Appl. Math., Volume 41 (1988), pp. 891-907 | DOI | MR | Zbl
[17] Well-posedness of the initial value problem for the Korteweg-de Vries equation, J. Am. Math. Soc., Volume 4 (1991), pp. 323-347 | DOI | MR | Zbl
[18] Well-posedness and scattering results for the generalized Korteweg–de Vries equation via the contraction principle, Commun. Pure Appl. Math., Volume 46 (1993), pp. 527-620 | DOI | MR | Zbl
[19] Global Well-posedness for the Cauchy problem of the Zakharov-Kuznetsov equation in 2D | arXiv | DOI | Numdam | MR
[20] The Cauchy problem for the Euler-Poisson system and derivation of the Zakharov-Kuznetsov equation, Prog. Nonlinear Differ. Equ. Appl., Volume 84 (2013), pp. 181-213 | MR | Zbl
[21] A higher order modified Korteweg-de Vries equation, Mat. Apl. Comput., Volume 14 (1995), pp. 253-267 | MR | Zbl
[22] Dispersive blow-up and persistence properties for the Schrödinger–Korteweg–de Vries system, Nonlinearity, Volume 32 (2019), pp. 4996-5016 | DOI | MR
[23] Well-posedness for the two-dimensional modified Zakharov-Kuznetsov equation, SIAM J. Math. Anal., Volume 41 (2009), pp. 1323-1339 | DOI | MR | Zbl
[24] Local and global well-posedness for the 2D generalized Zakharov-Kuznetsov equation, J. Funct. Anal., Volume 260 (2011), pp. 1060-1085 | DOI | MR | Zbl
[25] On Special Regularity Properties of Solutions of the Zakharov-Kuznetsov Equation, Commun. Pure Appl. Anal., Volume 17 (2018), pp. 1561-1572 | DOI | MR
[26] On the regularity of solutions to a class of nonlinear dispersive equations, Math. Ann., Volume 369 (2017), pp. 797-837 | DOI | MR
[27] On the smoothing properties of solutions to the modified Korteweg-de Vries equation, J. Differ. Equ., Volume 106 (1993), pp. 141-154 | DOI | MR | Zbl
[28] Bilinear Strichartz estimates for the Zakharov-Kuznetsov equation and applications, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 32 (2015), pp. 347-371 | DOI | Numdam | MR | Zbl
[29] On the persistent properties of solutions to semi-linear Schrödinger equation, Commun. Partial Differ. Equ., Volume 34 (2009), pp. 1208-1227 | DOI | MR | Zbl
[30] G. Ponce, Personal communication.
[31] A note on the Cauchy problem for the 2D generalized Zakharov-Kuznetsov equations, C. R. Acad. Sci. Paris, Volume 350 (2012), pp. 499-503 | DOI | MR | Zbl
[32] On three dimensional solitons, Sov. Phys. JETP, Volume 39 (1974), pp. 285-286
Cité par Sources :