Bifurcation for minimal surface equation in hyperbolic 3-manifolds
Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 243-279.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Initiated by the work of Uhlenbeck in late 1970s, we study existence, multiplicity and asymptotic behavior for minimal immersions of a closed surface in some hyperbolic three-manifold, with prescribed conformal structure on the surface and second fundamental form of the immersion. We prove several results in these directions, by analyzing the Gauss equation governing the immersion. We determine when existence holds, and obtain unique stable solutions for area minimizing immersions. Furthermore, we find exactly when other (unstable) solutions exist and study how they blow-up. We prove our class of unstable solutions exhibit different blow-up behaviors when the surface is of genus two or greater. We establish similar results for the blow-up behavior of any general family of unstable solutions. This information allows us to consider similar minimal immersion problems when the total extrinsic curvature is also prescribed.

Reçu le :
Révisé le :
Accepté le :
DOI : 10.1016/j.anihpc.2020.07.001
Classification : 53C21, 35J20, 53A10
Mots-clés : Minimal immersions, Hyperbolic three-manifolds, Moser-Trudinger functional, Blow-up analysis
Huang, Zheng 1, 2 ; Lucia, Marcello 2 ; Tarantello, Gabriella 3

1 a The Graduate Center, The City University of New York, 365 Fifth Ave., New York, NY 10016, USA
2 b Department of Mathematics, The City University of New York, Staten Island, NY 10314, USA
3 c Dipartimento di Matematica, Universita' di Roma “Tor Vergata”, Via della Ricerca Scientifica, I-00133 Roma, Italy
@article{AIHPC_2021__38_2_243_0,
     author = {Huang, Zheng and Lucia, Marcello and Tarantello, Gabriella},
     title = {Bifurcation for minimal surface equation in hyperbolic 3-manifolds},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {243--279},
     publisher = {Elsevier},
     volume = {38},
     number = {2},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.07.001},
     mrnumber = {4211986},
     zbl = {1465.53074},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.001/}
}
TY  - JOUR
AU  - Huang, Zheng
AU  - Lucia, Marcello
AU  - Tarantello, Gabriella
TI  - Bifurcation for minimal surface equation in hyperbolic 3-manifolds
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 243
EP  - 279
VL  - 38
IS  - 2
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.001/
DO  - 10.1016/j.anihpc.2020.07.001
LA  - en
ID  - AIHPC_2021__38_2_243_0
ER  - 
%0 Journal Article
%A Huang, Zheng
%A Lucia, Marcello
%A Tarantello, Gabriella
%T Bifurcation for minimal surface equation in hyperbolic 3-manifolds
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 243-279
%V 38
%N 2
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.001/
%R 10.1016/j.anihpc.2020.07.001
%G en
%F AIHPC_2021__38_2_243_0
Huang, Zheng; Lucia, Marcello; Tarantello, Gabriella. Bifurcation for minimal surface equation in hyperbolic 3-manifolds. Annales de l'I.H.P. Analyse non linéaire, mars – avril 2021, Tome 38 (2021) no. 2, pp. 243-279. doi : 10.1016/j.anihpc.2020.07.001. http://www.numdam.org/articles/10.1016/j.anihpc.2020.07.001/

[1] Ambrosetti, Antonio; Rabinowitz, Paul H. Dual variational methods in critical points theory and applications, J. Funct. Anal., Volume 14 (1973), pp. 349-381 | DOI | MR | Zbl

[2] Aubin, Thierry Nonlinear Analysis on Manifolds. Monge-Ampère Equations, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982 | MR | Zbl

[3] Aubin, Thierry Some Nonlinear Problems in Riemannian Geometry, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 1998 | MR | Zbl

[4] Borer, Franziska; Galimberti, Luca; Struwe, Michael “Large” conformal metrics of prescribed Gauss curvature on surfaces of higher genus, Comment. Math. Helv., Volume 90 (2015) no. 2, pp. 407-428 | DOI | MR | Zbl

[5] Brezis, Haïm; Merle, Frank Uniform estimates and blow-up behavior for solutions of Δu=V(x)eu in two dimensions, Commun. Partial Differ. Equ., Volume 16 (1991), pp. 1223-1253 | DOI | MR | Zbl

[6] Bartolucci, D.; Tarantello, G. Liouville type equations with singular data and their applications to periodic multivortices for the electroweak theory, Commun. Math. Phys., Volume 229 (2002) no. 1, pp. 3-47 | DOI | MR | Zbl

[7] Chen, Wen Xiong; Li, Congming Prescribing Gaussian curvatures on surfaces with conical singularities, J. Geom. Anal., Volume 1 (1991) no. 4, pp. 359-372 | DOI | MR | Zbl

[8] Chen, Chiun-Chuan; Lin, Chang-Shou Sharp estimates for solutions of multi-bubbles in compact Riemann surfaces, Commun. Pure Appl. Math., Volume 55 (2002) no. 6, pp. 728-771 | DOI | MR | Zbl

[9] Chen, Chiun-Chuan; Lin, Chang-Shou Topological degree for a mean field equation on Riemann surfaces, Commun. Pure Appl. Math., Volume 56 (2003) no. 12, pp. 1667-1727 | DOI | MR | Zbl

[10] Chen, Chiun-Chuan; Lin, Chang-Shou Mean field equations of Liouville type with singular data: sharper estimates, Discrete Contin. Dyn. Syst., Volume 28 (2010) no. 3, pp. 1237-1272 | DOI | MR | Zbl

[11] Chen, Chiun-Chuan; Lin, Chang-Shou Mean field equation of Liouville type with singular data: topological degree, Commun. Pure Appl. Math., Volume 68 (2015) no. 6, pp. 887-947 | DOI | MR | Zbl

[12] Crandall, Michael G.; Rabinowitz, Paul H. Mathematical theory of bifurcation, bifurcation phenomena in mathematical physics and related topics, Cargèse, 1979 (NATO Adv. Study Inst. Ser., Ser. C: Math. Phys. Sci.), Volume vol. 54, Reidel, Dordrecht-Boston, Mass (1980), pp. 3-46 | MR | Zbl

[13] Ding, Weiyue; Jost, Jürgen; Li, Jiayu; Wang, Guofang The differential equation Δu=8π8πheu on a compact Riemann surface, Asian J. Math., Volume 1 (1997) no. 2, pp. 230-248 | DOI | MR | Zbl

[14] Ding, Wei Yue; Quan Liu, Jia A note on the problem of prescribing Gaussian curvature on surfaces, Trans. Am. Math. Soc., Volume 347 (1995) no. 3, pp. 1059-1066 | DOI | MR | Zbl

[15] Huang, Zheng; Lucia, Marcello Minimal immersions of closed surfaces in hyperbolic three-manifolds, Geom. Dedic., Volume 158 (2012), pp. 397-411 | DOI | MR | Zbl

[16] Hopf, Heinz Differential Geometry in the Large, Lecture Notes in Mathematics, vol. 1000, Springer-Verlag, Berlin, 1989 | MR | Zbl

[17] Jacobowitz, Howard The Gauss-Codazzi equations, Tensor (N.S.), Volume 39 (1982), pp. 15-22 | MR | Zbl

[18] Krasnov, Kirill; Schlenker, Jean-Marc Minimal surfaces and particles in 3-manifolds, Geom. Dedic., Volume 126 (2007), pp. 187-254 | DOI | MR | Zbl

[19] Lawson, H.B. Jr. Complete minimal surfaces in S3 , Ann. Math., Volume 92 (1970), pp. 335-374 | DOI | MR | Zbl

[20] Li, Yanyan; Shafrir, Itai Blow-up analysis for solutions of Δu=Veu in dimension two, Indiana Univ. Math. J., Volume 43 (1994), pp. 1255-1270 | DOI | MR | Zbl

[21] Moser, J. A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., Volume 20 ( 1970/71 ), pp. 1077-1092 | DOI | MR | Zbl

[22] Malchiodi, Andrea; Ruiz, David New improved Moser-Trudinger inequalities and singular Liouville equations on compact surfaces, Geom. Funct. Anal., Volume 21 (2011) no. 5, pp. 1196-1217 | DOI | MR | Zbl

[23] Nolasco, Margherita; Tarantello, Gabriella On a sharp Sobolev-type inequality on two-dimensional compact manifolds, Arch. Ration. Mech. Anal., Volume 145 (1998) no. 2, pp. 161-195 | DOI | MR | Zbl

[24] Ohtsuka, Hiroshi; Suzuki, Takashi Blow-up analysis for Liouville type equation in self-dual gauge field theories, Commun. Contemp. Math., Volume 7 (2005) no. 2, pp. 177-205 | DOI | MR | Zbl

[25] Struwe, Michael Variational Methods, A Series of Modern Surveys in Mathematics, vol. 34, Springer-Verlag, 2000 | MR | Zbl

[26] Struwe, Michael “Bubbling” of the prescribed curvature flow on the torus, J. Eur. Math. Soc. (2020) (in press) | MR | Zbl

[27] Tarantello, Gabriella Self-Dual Gauge Field Vortices: An Analytical Approach, Progress in Nonlinear Differential Equations and Their Applications, vol. 72, Birkhäuser Boston, Inc., Boston, MA, 2008 | MR | Zbl

[28] Taubes, Clifford Henry (Geom. Topol. Monogr.), Volume vol. 7, Proceedings of the Casson Fest Geom. Topol. Publ., Coventry (2004), pp. 69-100 (electronic) | MR | Zbl

[29] Trudinger, Neil S. On imbeddings into Orlicz spaces and some applications, J. Math. Mech., Volume 17 (1967), pp. 473-483 | MR | Zbl

[30] Uhlenbeck, Karen K. (Ann. of Math. Stud.), Volume vol. 103, Princeton Univ. Press, Princeton, NJ (1983), pp. 147-168 | MR | Zbl

Cité par Sources :