Relaxed multi-marginal costs and quantization effects
Annales de l'I.H.P. Analyse non linéaire, janvier – février 2021, Tome 38 (2021) no. 1, pp. 61-90.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We propose a duality theory for multi-marginal repulsive cost that appears in optimal transport problems arising in Density Functional Theory. The related optimization problems involve probabilities on the entire space and, as minimizing sequences may lose mass at infinity, it is natural to expect relaxed solutions which are sub-probabilities. We first characterize the N-marginals relaxed cost in terms of a stratification formula which takes into account all k interactions with kN. We then develop a duality framework involving continuous functions vanishing at infinity and deduce primal-dual necessary and sufficient optimality conditions. Next we prove the existence and the regularity of an optimal dual potential under very mild assumptions. In the last part of the paper, we apply our results to a minimization problem involving a given continuous potential and we give evidence of a mass quantization effect for optimal solutions.

DOI : 10.1016/j.anihpc.2020.06.004
Classification : 49J45, 49N15, 49K30, 35Q40
Mots-clés : Multi-marginal optimal transport, Duality and Relaxation, Coulomb cost, Quantization of minimizers
Bouchitté, Guy 1 ; Buttazzo, Giuseppe 2 ; Champion, Thierry 1 ; De Pascale, Luigi 3

1 a Laboratoire IMATH, Université de Toulon, BP 20132, 83957 La Garde Cedex, France
2 b Dipartimento di Matematica, Università di Pisa, Largo B. Pontecorvo 5, 56127 Pisa, Italy
3 c Dipartimento di Matematica e Informatica, Università di Firenze, Viale Morgagni 67/a, 50134 Firenze, Italy
@article{AIHPC_2021__38_1_61_0,
     author = {Bouchitt\'e, Guy and Buttazzo, Giuseppe and Champion, Thierry and De Pascale, Luigi},
     title = {Relaxed multi-marginal costs and quantization effects},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {61--90},
     publisher = {Elsevier},
     volume = {38},
     number = {1},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.06.004},
     mrnumber = {4200477},
     zbl = {1461.49046},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.06.004/}
}
TY  - JOUR
AU  - Bouchitté, Guy
AU  - Buttazzo, Giuseppe
AU  - Champion, Thierry
AU  - De Pascale, Luigi
TI  - Relaxed multi-marginal costs and quantization effects
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 61
EP  - 90
VL  - 38
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.06.004/
DO  - 10.1016/j.anihpc.2020.06.004
LA  - en
ID  - AIHPC_2021__38_1_61_0
ER  - 
%0 Journal Article
%A Bouchitté, Guy
%A Buttazzo, Giuseppe
%A Champion, Thierry
%A De Pascale, Luigi
%T Relaxed multi-marginal costs and quantization effects
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 61-90
%V 38
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.06.004/
%R 10.1016/j.anihpc.2020.06.004
%G en
%F AIHPC_2021__38_1_61_0
Bouchitté, Guy; Buttazzo, Giuseppe; Champion, Thierry; De Pascale, Luigi. Relaxed multi-marginal costs and quantization effects. Annales de l'I.H.P. Analyse non linéaire, janvier – février 2021, Tome 38 (2021) no. 1, pp. 61-90. doi : 10.1016/j.anihpc.2020.06.004. http://www.numdam.org/articles/10.1016/j.anihpc.2020.06.004/

[1] U. Bindini, G. Bouchitté, Some asymptotic problems in many-body optimal transport, forthcoming.

[2] Bindini, U.; De Pascale, L. Optimal transport with Coulomb cost and the semiclassical limit of density functional theory, J. Éc. Polytech. Math., Volume 4 (2017), pp. 909-934 | DOI | MR | Zbl

[3] G. Bouchitté, G. Buttazzo, T. Champion, L. De Pascale, Dissociating limit in Density Functional Theory with Coulomb optimal transport cost, To appear in Ann. Sc. Norm. Super. Pisa Cl. Sci. | MR

[4] Buttazzo, G.; Champion, T.; De Pascale, L. Continuity and estimates for multi-marginal optimal transportation problems with singular costs, Appl. Math. Optim., Volume 78 (2018) no. 1, pp. 185-200 | DOI | MR | Zbl

[5] Buttazzo, G.; De Pascale, L.; Gori-Giorgi, P. Optimal-transport formulation of electronic density-functional theory, Phys. Rev. A, Volume 85 (2012) no. 062502

[6] Chen, H.; Friesecke, G.; Mendl, C.B. Numerical methods for a Kohn-Sham density functional model based on optimal transport, J. Chem. Theory Comput., Volume 10 (2014), pp. 4360-4368 | DOI

[7] Colombo, M.; Di Marino, S.; Stra, F. Continuity of multi-marginal optimal transport with repulsive cost, SIAM J. Math. Anal., Volume 51 (2019), pp. 2903-2926 | DOI | MR | Zbl

[8] Cotar, C.; Friesecke, G.; Klüppelberg, C. Density functional theory and optimal transportation with Coulomb cost, Commun. Pure Appl. Math., Volume 66 (2013) no. 4, pp. 548-599 | DOI | MR | Zbl

[9] Cotar, C.; Friesecke, G.; Klüppelberg, C. Smoothing of transport plans with fixed marginals and rigorous semiclassical limit of the Hohenberg-Kohn functional, Arch. Ration. Mech. Anal., Volume 228 (2018) no. 3, pp. 891-922 | DOI | MR | Zbl

[10] Cotar, C.; Petrache, M. Next-order asymptotic expansion for N -marginal optimal transport with Coulomb and Riesz costs, Adv. Math., Volume 344 (2019), pp. 137-233 | DOI | MR | Zbl

[11] De Pascale, L. Optimal transport with Coulomb cost. Approximation and duality, ESAIM: Math. Model. Numer. Anal., Volume 49 (2015) no. 6, pp. 1643-1657 | DOI | Numdam | MR | Zbl

[12] S. Di Marino, M. Lewin, L. Nenna, Paper in preparation and Personal Communication, 2019.

[13] Frank, R.L.; Nam, P.T.; Van Den Bosch, H. A short proof of the ionization conjecture in Müller theory, Contemp. Math. of Amer. Math. Soc., Volume 717 (2018), pp. 1-12 | DOI | MR | Zbl

[14] Frank, R.L.; Nam, P.T.; Van Den Bosch, H. The ionization conjecture in Thomas-Fermi-Dirac-von Weizsäcker theory, Commun. Pure Appl. Math., Volume 71 (2018) no. 3, pp. 577-614 | DOI | MR | Zbl

[15] Kellerer, H.G. Duality theorems for marginal problems, Probab. Theory Relat. Fields, Volume 67 (1984) no. 4, pp. 399-432 | MR | Zbl

[16] Leblé, T.; Serfaty, S. Large deviation principle for empirical fields of Log and Riesz gases, Invent. Math., Volume 210 (2017), pp. 645-757 | DOI | MR | Zbl

[17] Lewin, M. Semi-classical limit of the Levy-Lieb functional in Density Functional Theory, C. R. Math. Acad. Sci. Paris, Volume 356 (2018) no. 4, pp. 449-455 | DOI | MR | Zbl

[18] Lewin, M.; Lieb, E.H.; Seiringer, R. Statistical mechanics of the uniform electron gas, J. Éc. Polytech. Math., Volume 5 (2018), pp. 79-116 | MR | Zbl

[19] Lieb, E.H. Density functionals for Coulomb systems, Int. J. Quant. Chem., Volume 24 (1983) no. 3, pp. 243-277 | DOI

[20] Serfaty, S. Systems of points with Coulomb interactions, Newsl. - Eur. Math. Soc., Volume 110 (2018), pp. 16-21 | MR | Zbl

[21] Petrache, M.; Serfaty, S. Next order asymptotics and renormalized energy for Riesz interactions, J. Inst. Math. Jussieu, Volume 16 (2017) no. 3, pp. 501-569 | DOI | MR | Zbl

[22] Solovej, J.P. The ionization conjecture in Hartree-Fock theory, Ann. Math., Volume 158 (2003) no. 2, pp. 509-576 | DOI | MR | Zbl

[23] Solovej, J.P. Proof of the ionization conjecture in a reduced Hartree-Fock model, Invent. Math., Volume 104 (1991) no. 2, pp. 291-311 | DOI | MR | Zbl

[24] Villani, C. Topics in Optimal Transportation, Graduate Studies in Mathematics, vol. 58, American Mathematical Society, Providence, 2003 | MR | Zbl

Cité par Sources :