Navier-Stokes equation in super-critical spaces Ep,qs
Annales de l'I.H.P. Analyse non linéaire, janvier – février 2021, Tome 38 (2021) no. 1, pp. 139-173.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

In this paper we develop a new way to study the global existence and uniqueness for the Navier-Stokes equation (NS) and consider the initial data in a class of modulation spaces Ep,qs with exponentially decaying weights (s<0,1<p,q<) for which the norms are defined by

fEp,qs=(kZd2s|k|qF1χk+[0,1]dFfpq)1/q.
The space Ep,qs is a rather rough function space and cannot be treated as a subspace of tempered distributions. For example, we have the embedding HσE2,1s for any σ<0 and s<0. It is known that Hσ (σ<d/21) is a super-critical space of NS, it follows that E2,1s (s<0) is also super-critical for NS. We show that NS has a unique global mild solution if the initial data belong to E2,1s (s<0) and their Fourier transforms are supported in RId:={ξRd:ξi0,i=1,...,d}. Similar results hold for the initial data in Er,1s with 2<rd. Our results imply that NS has a unique global solution if the initial value u0 is in L2 with suppuˆ0RId.

DOI : 10.1016/j.anihpc.2020.06.002
Classification : 35Q55, 42B35, 42B37
Mots-clés : Navier-Stokes equation, Modulation spaces, Negative exponential weight, Global well-posedness
Feichtinger, Hans G. 1 ; Gröchenig, Karlheinz 1 ; Li, Kuijie 2 ; Wang, Baoxiang 3

1 a Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, A-1090 Wien, Austria
2 b School of Mathematical Sciences, Fudan University, Shanghai, 200433, China
3 c LMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China
@article{AIHPC_2021__38_1_139_0,
     author = {Feichtinger, Hans G. and Gr\"ochenig, Karlheinz and Li, Kuijie and Wang, Baoxiang},
     title = {Navier-Stokes equation in super-critical spaces $ {E}_{p,q}^{s}$},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {139--173},
     publisher = {Elsevier},
     volume = {38},
     number = {1},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.06.002},
     mrnumber = {4200480},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.06.002/}
}
TY  - JOUR
AU  - Feichtinger, Hans G.
AU  - Gröchenig, Karlheinz
AU  - Li, Kuijie
AU  - Wang, Baoxiang
TI  - Navier-Stokes equation in super-critical spaces $ {E}_{p,q}^{s}$
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 139
EP  - 173
VL  - 38
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.06.002/
DO  - 10.1016/j.anihpc.2020.06.002
LA  - en
ID  - AIHPC_2021__38_1_139_0
ER  - 
%0 Journal Article
%A Feichtinger, Hans G.
%A Gröchenig, Karlheinz
%A Li, Kuijie
%A Wang, Baoxiang
%T Navier-Stokes equation in super-critical spaces $ {E}_{p,q}^{s}$
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 139-173
%V 38
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.06.002/
%R 10.1016/j.anihpc.2020.06.002
%G en
%F AIHPC_2021__38_1_139_0
Feichtinger, Hans G.; Gröchenig, Karlheinz; Li, Kuijie; Wang, Baoxiang. Navier-Stokes equation in super-critical spaces $ {E}_{p,q}^{s}$. Annales de l'I.H.P. Analyse non linéaire, janvier – février 2021, Tome 38 (2021) no. 1, pp. 139-173. doi : 10.1016/j.anihpc.2020.06.002. http://www.numdam.org/articles/10.1016/j.anihpc.2020.06.002/

[1] Bae, H.; Biswas, A.; Tadmor, E. Analyticity and decay estimates of the Navier–Stokes equations in critical Besov spaces, Arch. Ration. Mech. Anal., Volume 205 (2012), pp. 963-991 | DOI | MR | Zbl

[2] Bahouri, H.; Chemin, J-Y.; Danchin, R. Fourier Analysis and Nonlinear Partial Differential Equations, Fundamental Principles of Mathematical Sciences, vol. 343, Springer, Heidelberg, 2011 | MR | Zbl

[3] Bényi, A.; Gröchenig, K.; Okoudjou, K.A.; Rogers, L.G. Unimodular Fourier multiplier for modulation spaces, J. Funct. Anal., Volume 246 (2007), pp. 366-384 | DOI | MR | Zbl

[4] Bergh, J.; Löfström, J. Interpolation Spaces, Springer–Verlag, Berlin-New York, 1976 | DOI | Zbl

[5] Björck, G. Linear partial differential operators and generalized distributions, Ark. Mat., Volume 6 (1966), pp. 351-407 | DOI | MR | Zbl

[6] Bonami, A.; Demange, B.; Jaming, P. Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms, Rev. Mat. Iberoam., Volume 19 (2003), pp. 23-55 | DOI | MR | Zbl

[7] Bourgain, J.; Pavlović, N. Ill-posedness of the Navier–Stokes equations in a critical space in 3D, J. Funct. Anal., Volume 255 (2008), pp. 2233-2247 | DOI | MR | Zbl

[8] de Bruijn, N.G. A theory of generalized functions, with applications to Wigner distribution and Weyl correspondence, Nieuw Arch. Wiskd. (3), Volume 21 (1973), pp. 205-280 | MR | Zbl

[9] Cannone, M. A generalization of a theorem by Kato on Navier–Stokes equations, Rev. Mat. Iberoam., Volume 13 (1997), pp. 515-541 | DOI | MR | Zbl

[10] Cannone, M.; Planchon, F. Self-similar solutions for Navier–Stokes equations in R3 , Commun. Partial Differ. Equ., Volume 21 (1996), pp. 179-193 | DOI | MR | Zbl

[11] Cappiello, M.; Toft, J. Pseudo-differential operators in a Gelfand-Shilov setting, Math. Nachr., Volume 290 (2017), pp. 738-755 | DOI | MR

[12] Chemin, J-Y. Perfect Incompressible Fluids, Oxford University Press, Oxford, 1998 | DOI | MR | Zbl

[13] Chemin, J-Y. Théorèmes d'unicité pour le système de Navier–Stokes tridimensionnel, J. Anal. Math., Volume 77 (1999), pp. 27-50 | DOI | MR | Zbl

[14] Chemin, J-Y.; Lerner, N. Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes, J. Differ. Equ., Volume 121 (1995) no. 2, pp. 314-328 | DOI | MR | Zbl

[15] Chen, J.; Fan, D.; Sun, L. Asymptotic estimates for unimodular Fourier multipliers on modulation spaces, Discrete Contin. Dyn. Syst., Volume 32 (2012), pp. 467-485 | DOI | MR | Zbl

[16] Chen, M.; Wang, B.; Wang, S.; Wong, M.W. On dissipative nonlinear evolutional pseudo-differential equations, Appl. Comput. Harmon. Anal., Volume 48 (2020) no. 1, pp. 182-217 | DOI | MR

[17] Cho, J. A characterization of Gelfand–Shilov space based on Wigner distribution, Commun. Korean Math. Soc., Volume 14 (1999), pp. 761-767 | MR | Zbl

[18] Chung, J.; Chung, S.Y.; Kim, D. Characterization of the Gelfand–Shilov spaces via Fourier transforms, Proc. Am. Math. Soc., Volume 124 (1996), pp. 2101-2108 | DOI | MR | Zbl

[19] Córdoba, A.; Fefferman, C. Wave packets and Fourier integral operators, Commun. Partial Differ. Equ., Volume 3 (1978), pp. 979-1005 | DOI | MR | Zbl

[20] Cordero, E.; Nicola, F. Some new Strichartz estimates for the Schrödinger equation, J. Differ. Equ., Volume 245 (2008), pp. 1945-1974 | DOI | MR | Zbl

[21] Cordero, E.; Nicola, F. Sharpness of some properties of Wiener amalgam and modulation spaces, Bull. Aust. Math. Soc., Volume 80 (2009), pp. 105-116 | DOI | MR | Zbl

[22] Deng, C.; Cui, S. Random-data Cauchy problem for the Navier–Stokes equations on T3 , J. Differ. Equ., Volume 251 (2011), pp. 902-917 | DOI | MR | Zbl

[23] Dong, H.; Li, D. Optimal local smoothing and analyticity rate estimates for the generalized Navier–Stokes equations, Commun. Math. Sci., Volume 7 (2009), pp. 67-80 | DOI | MR | Zbl

[24] Escauriaza, L.; Serigin, G.; Sverak, V. L3, solutions of Navier–Stokes equations and backward uniqueness, Usp. Mat. Nauk, Volume 58 (2003), pp. 3-44 | MR | Zbl

[25] Feichtinger, H.G., Proc. Internat. Conf. on Wavelet and Applications, University of Vienna, India (1983), pp. 99-140 (Technical Report, 2003, New Delhi Allied Publishers)

[26] Feichtinger, H.G.; Gröchenig, K. (Lecture Notes in Math.), Volume vol. 1302, Springer, Berlin (1988), pp. 52-73 | MR | Zbl

[27] Feichtinger, H.G.; Weisz, F. Inversion formulas for the short-time Fourier transform, J. Geom. Anal., Volume 16 (2006), pp. 507-521 | DOI | MR | Zbl

[28] Foias, C.; Temam, R. Gevrey class regularity for the solutions of the Navier–Stokes equations, J. Funct. Anal., Volume 87 (1989), pp. 359-369 | DOI | MR | Zbl

[29] Gelfand, I.M.; Shilov, G.E. Generalized Functions, Spaces of Fundamental and Generalized Functions, Vol. 2, Academic Press, New York-London, 1968 | MR | Zbl

[30] Germain, P. The second iterate for the Navier-Stokes equation, J. Funct. Anal., Volume 255 (2008), pp. 2248-2264 | DOI | MR | Zbl

[31] Germain, P.; Pavlović, N.; Staffilani, G. Regularity of solutions to the Navier-Stokes equations evolving from small data in BMO1 , Int. Math. Res. Not. IMRN, Volume 21 (2007) (35 pages) | MR | Zbl

[32] Gröchenig, K. Foundations of Time–Frequency Analysis, Birkhäuser, Boston, MA, 2001 | DOI | MR | Zbl

[33] Gröchenig, K.; Zimmermann, G. Hardy's theorem and the short-time Fourier transform of Schwartz functions, J. Lond. Math. Soc. (2), Volume 63 (2001), pp. 205-214 | DOI | MR | Zbl

[34] Gröchenig, K.; Zimmermann, G. Spaces of test functions via the STFT, J. Funct. Spaces Appl., Volume 2 (2004), pp. 25-53 | DOI | MR | Zbl

[35] Grujič, Z.; Kukavica, I. Space analyticity for the Navier–Stokes and related equations with initial data in Lp , J. Funct. Anal., Volume 152 (1998), pp. 247-466 | DOI | MR | Zbl

[36] Hajaiej, H.; Molinet, L.; Ozawa, T.; Wang, B. Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations, Harmonic Analysis and Nonlinear Partial Differential Equations, Res. Inst. Math. Sci. (RIMS), vol. B26, RIMS Kôkyûroku Bessatsu, Kyoto, 2011, pp. 159-175 | MR | Zbl

[37] Han, J.; Wang, B. α-modulation spaces (I) scaling, embedding and algebraic properties, J. Math. Soc. Jpn., Volume 66 (2014), pp. 1315-1373 | MR | Zbl

[38] Hörmander, L. Estimates for translation invariant operators in Lp spaces, Acta Math., Volume 104 (1960), pp. 93-139 | DOI | MR | Zbl

[39] Iwabuchi, T. Navier–Stokes equations and nonlinear heat equations in modulation spaces with negative derivative indices, J. Differ. Equ., Volume 248 (2010), pp. 1972-2002 | DOI | MR | Zbl

[40] Janssen, A.J.E.M. Generalized stochastic processes, Department of Mathematics, Technische Hogeschool Eindhoven, Eindhoven, 1976 (T. H. Report, No. 76-WSK-07) | MR | Zbl

[41] Kato, K.; Kobayashi, M.; Ito, S. Estimates on modulation spaces for Schrödinger evolution operators with quadratic and sub-quadratic potentials, J. Funct. Anal., Volume 266 (2014), pp. 733-753 | DOI | MR | Zbl

[42] Kato, T. Strong Lp solutions of the Navier–Stokes equations in Rm with applications to weak solutions, Math. Z., Volume 187 (1984), pp. 471-480 | DOI | MR | Zbl

[43] Koch, H.; Tataru, D. Well-posedness for the Navier–Stokes equations, Adv. Math., Volume 157 (2001), pp. 22-35 | DOI | MR | Zbl

[44] Kostadinova, S.; Pilipović, S.; Sanevac, K.; Vindas, J. The short-time Fourier transform of distributions of exponential type and Tauberian theorems for shift-asymptotics, Filomat, Volume 30 (2016) no. 11, pp. 3047-3061 | DOI | MR

[45] Lemarié-Rieusset, P.G. On the analyticity of mild solutions for the Navier–Stokes equations, C. R. Acad. Sci. Paris, Ser. I, Volume 330 (2000), pp. 183-186 | DOI | MR | Zbl

[46] Lemarié-Rieusset, P.G. The Navier–Stokes Problem in the 21st Century, CRC Press, Boca Raton, FL, 2016 | DOI | MR

[47] Li, D.; Sinai, Ya.G. Blow ups of complex solutions of the 3D Navier–Stokes system and renormalization group method, J. Eur. Math. Soc. (JEMS), Volume 10 (2008), pp. 267-313 | DOI | MR | Zbl

[48] Li, K.; Ozawa, T.; Wang, B. Dynamical behavior for the solutions of the Navier-Stokes equation, Commun. Pure Appl. Anal., Volume 17 (2018), pp. 1511-1560 | DOI | MR

[49] Miura, H.; Sawada, O. On the regularizing rate estimates of Koch-Tataru's solution to the Navier–Stokes equations, Asymptot. Anal., Volume 49 (2006), pp. 1-15 | MR | Zbl

[50] Nahmod, A.; Pavlović, N.; Staffilani, G. Almost sure existence of global weak solutions for supercritical Navier–Stokes equations, SIAM J. Math. Anal., Volume 45 (2013) no. 6, pp. 3431-3452 | DOI | MR | Zbl

[51] Obiedat, H.M. A topological characterization of the Beurling-Björk space Cw using the short-time Fourier transform, CUBO, Volume 8 (2006), pp. 33-45 | MR | Zbl

[52] Planchon, F. Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier–Stokes equations in R3 , Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 13 (1996), pp. 319-336 | DOI | Numdam | MR | Zbl

[53] Pilipović, S. Tempered ultradistributions, Boll. Unione Mat. Ital., B (7), Volume 2 (1988), pp. 235-251 | MR | Zbl

[54] Silva, J. Sebastião Les séries de multipôles des physiciens et la théorie des ultradistributions, Math. Ann., Volume 174 (1967), pp. 109-142 | DOI | MR | Zbl

[55] Stein, E.M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993 | MR | Zbl

[56] Sugimoto, M.; Tomita, N. The dilation property of modulation spaces and their inclusion relation with Besov spaces, J. Funct. Anal., Volume 248 (2007), pp. 79-106 | DOI | MR | Zbl

[57] Teofanov, N. Ultradistributions and time–frequency analysis (Boggiatto, P.; Rodino, L.; Toft, J.; Wong, M.W., eds.), Pseudo-Differential Operators and Related Topics, Operator Theory: Advances and Applications, vol. 164, Birkhäuser, Basel, 2006, pp. 173-191 | DOI | MR | Zbl

[58] Teofanov, N. Modulation spaces, Gelfand-Shilov spaces and pseudodifferential operators, Sampl. Theory Signal Image Process., Int. J., Volume 5 (2006), pp. 225-242 | MR | Zbl

[59] Toft, J. The Bargmann transform on modulation and Gelfand-Shilov spaces, with applications to Toeplitz and pseudo-differential operators, J. Pseudo-Differ. Oper. Appl., Volume 3 (2012), pp. 145-227 | DOI | MR | Zbl

[60] Triebel, H. Theory of Function Spaces, Birkhäuser–Verlag, 1983 | DOI | MR | Zbl

[61] Wang, B. Ill-posedness for the Navier-Stokes equation in critical Besov spaces B˙,q1 , Adv. Math., Volume 268 (2015), pp. 350-372 | DOI | MR | Zbl

[62] Wang, B.; Huang, C. Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations, J. Differ. Equ., Volume 239 (2007), pp. 213-250 | DOI | MR | Zbl

[63] Wang, B.; Huo, Z.; Hao, C.; Guo, Z. Harmonic Analysis Methods for Nonlinear Evolution Equations, World Scientific, Hackensack, NJ, 2011 | DOI | MR | Zbl

[64] Wang, B.; Zhao, L.; Guo, B. Isometric decomposition operators, function spaces Ep,qλ and their applications to nonlinear evolution equations, J. Funct. Anal., Volume 233 (2006), pp. 1-39 | DOI | MR | Zbl

[65] Yoneda, T. Ill-posedness of the 3D Navier–Stokes equations in a generalized Besov space near BMO1 , J. Funct. Anal., Volume 258 (2010), pp. 3376-3387 | DOI | MR | Zbl

[66] Zhang, T.; Fang, D. Random data Cauchy theory for the incompressible three dimensional Navier–Stokes equations, Proc. Am. Math. Soc., Volume 139 (2011) no. 8, pp. 2827-2837 | DOI | MR | Zbl

Cité par Sources :