In this paper we develop a new way to study the global existence and uniqueness for the Navier-Stokes equation (NS) and consider the initial data in a class of modulation spaces with exponentially decaying weights for which the norms are defined by
Mots-clés : Navier-Stokes equation, Modulation spaces, Negative exponential weight, Global well-posedness
@article{AIHPC_2021__38_1_139_0, author = {Feichtinger, Hans G. and Gr\"ochenig, Karlheinz and Li, Kuijie and Wang, Baoxiang}, title = {Navier-Stokes equation in super-critical spaces $ {E}_{p,q}^{s}$}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {139--173}, publisher = {Elsevier}, volume = {38}, number = {1}, year = {2021}, doi = {10.1016/j.anihpc.2020.06.002}, mrnumber = {4200480}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.06.002/} }
TY - JOUR AU - Feichtinger, Hans G. AU - Gröchenig, Karlheinz AU - Li, Kuijie AU - Wang, Baoxiang TI - Navier-Stokes equation in super-critical spaces $ {E}_{p,q}^{s}$ JO - Annales de l'I.H.P. Analyse non linéaire PY - 2021 SP - 139 EP - 173 VL - 38 IS - 1 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2020.06.002/ DO - 10.1016/j.anihpc.2020.06.002 LA - en ID - AIHPC_2021__38_1_139_0 ER -
%0 Journal Article %A Feichtinger, Hans G. %A Gröchenig, Karlheinz %A Li, Kuijie %A Wang, Baoxiang %T Navier-Stokes equation in super-critical spaces $ {E}_{p,q}^{s}$ %J Annales de l'I.H.P. Analyse non linéaire %D 2021 %P 139-173 %V 38 %N 1 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2020.06.002/ %R 10.1016/j.anihpc.2020.06.002 %G en %F AIHPC_2021__38_1_139_0
Feichtinger, Hans G.; Gröchenig, Karlheinz; Li, Kuijie; Wang, Baoxiang. Navier-Stokes equation in super-critical spaces $ {E}_{p,q}^{s}$. Annales de l'I.H.P. Analyse non linéaire, janvier – février 2021, Tome 38 (2021) no. 1, pp. 139-173. doi : 10.1016/j.anihpc.2020.06.002. http://www.numdam.org/articles/10.1016/j.anihpc.2020.06.002/
[1] Analyticity and decay estimates of the Navier–Stokes equations in critical Besov spaces, Arch. Ration. Mech. Anal., Volume 205 (2012), pp. 963-991 | DOI | MR | Zbl
[2] Fourier Analysis and Nonlinear Partial Differential Equations, Fundamental Principles of Mathematical Sciences, vol. 343, Springer, Heidelberg, 2011 | MR | Zbl
[3] Unimodular Fourier multiplier for modulation spaces, J. Funct. Anal., Volume 246 (2007), pp. 366-384 | DOI | MR | Zbl
[4] Interpolation Spaces, Springer–Verlag, Berlin-New York, 1976 | DOI | Zbl
[5] Linear partial differential operators and generalized distributions, Ark. Mat., Volume 6 (1966), pp. 351-407 | DOI | MR | Zbl
[6] Hermite functions and uncertainty principles for the Fourier and the windowed Fourier transforms, Rev. Mat. Iberoam., Volume 19 (2003), pp. 23-55 | DOI | MR | Zbl
[7] Ill-posedness of the Navier–Stokes equations in a critical space in 3D, J. Funct. Anal., Volume 255 (2008), pp. 2233-2247 | DOI | MR | Zbl
[8] A theory of generalized functions, with applications to Wigner distribution and Weyl correspondence, Nieuw Arch. Wiskd. (3), Volume 21 (1973), pp. 205-280 | MR | Zbl
[9] A generalization of a theorem by Kato on Navier–Stokes equations, Rev. Mat. Iberoam., Volume 13 (1997), pp. 515-541 | DOI | MR | Zbl
[10] Self-similar solutions for Navier–Stokes equations in , Commun. Partial Differ. Equ., Volume 21 (1996), pp. 179-193 | DOI | MR | Zbl
[11] Pseudo-differential operators in a Gelfand-Shilov setting, Math. Nachr., Volume 290 (2017), pp. 738-755 | DOI | MR
[12] Perfect Incompressible Fluids, Oxford University Press, Oxford, 1998 | DOI | MR | Zbl
[13] Théorèmes d'unicité pour le système de Navier–Stokes tridimensionnel, J. Anal. Math., Volume 77 (1999), pp. 27-50 | DOI | MR | Zbl
[14] Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes, J. Differ. Equ., Volume 121 (1995) no. 2, pp. 314-328 | DOI | MR | Zbl
[15] Asymptotic estimates for unimodular Fourier multipliers on modulation spaces, Discrete Contin. Dyn. Syst., Volume 32 (2012), pp. 467-485 | DOI | MR | Zbl
[16] On dissipative nonlinear evolutional pseudo-differential equations, Appl. Comput. Harmon. Anal., Volume 48 (2020) no. 1, pp. 182-217 | DOI | MR
[17] A characterization of Gelfand–Shilov space based on Wigner distribution, Commun. Korean Math. Soc., Volume 14 (1999), pp. 761-767 | MR | Zbl
[18] Characterization of the Gelfand–Shilov spaces via Fourier transforms, Proc. Am. Math. Soc., Volume 124 (1996), pp. 2101-2108 | DOI | MR | Zbl
[19] Wave packets and Fourier integral operators, Commun. Partial Differ. Equ., Volume 3 (1978), pp. 979-1005 | DOI | MR | Zbl
[20] Some new Strichartz estimates for the Schrödinger equation, J. Differ. Equ., Volume 245 (2008), pp. 1945-1974 | DOI | MR | Zbl
[21] Sharpness of some properties of Wiener amalgam and modulation spaces, Bull. Aust. Math. Soc., Volume 80 (2009), pp. 105-116 | DOI | MR | Zbl
[22] Random-data Cauchy problem for the Navier–Stokes equations on , J. Differ. Equ., Volume 251 (2011), pp. 902-917 | DOI | MR | Zbl
[23] Optimal local smoothing and analyticity rate estimates for the generalized Navier–Stokes equations, Commun. Math. Sci., Volume 7 (2009), pp. 67-80 | DOI | MR | Zbl
[24] solutions of Navier–Stokes equations and backward uniqueness, Usp. Mat. Nauk, Volume 58 (2003), pp. 3-44 | MR | Zbl
[25] , Proc. Internat. Conf. on Wavelet and Applications, University of Vienna, India (1983), pp. 99-140 (Technical Report, 2003, New Delhi Allied Publishers)
[26] (Lecture Notes in Math.), Volume vol. 1302, Springer, Berlin (1988), pp. 52-73 | MR | Zbl
[27] Inversion formulas for the short-time Fourier transform, J. Geom. Anal., Volume 16 (2006), pp. 507-521 | DOI | MR | Zbl
[28] Gevrey class regularity for the solutions of the Navier–Stokes equations, J. Funct. Anal., Volume 87 (1989), pp. 359-369 | DOI | MR | Zbl
[29] Generalized Functions, Spaces of Fundamental and Generalized Functions, Vol. 2, Academic Press, New York-London, 1968 | MR | Zbl
[30] The second iterate for the Navier-Stokes equation, J. Funct. Anal., Volume 255 (2008), pp. 2248-2264 | DOI | MR | Zbl
[31] Regularity of solutions to the Navier-Stokes equations evolving from small data in , Int. Math. Res. Not. IMRN, Volume 21 (2007) (35 pages) | MR | Zbl
[32] Foundations of Time–Frequency Analysis, Birkhäuser, Boston, MA, 2001 | DOI | MR | Zbl
[33] Hardy's theorem and the short-time Fourier transform of Schwartz functions, J. Lond. Math. Soc. (2), Volume 63 (2001), pp. 205-214 | DOI | MR | Zbl
[34] Spaces of test functions via the STFT, J. Funct. Spaces Appl., Volume 2 (2004), pp. 25-53 | DOI | MR | Zbl
[35] Space analyticity for the Navier–Stokes and related equations with initial data in , J. Funct. Anal., Volume 152 (1998), pp. 247-466 | DOI | MR | Zbl
[36] Necessary and sufficient conditions for the fractional Gagliardo-Nirenberg inequalities and applications to Navier-Stokes and generalized boson equations, Harmonic Analysis and Nonlinear Partial Differential Equations, Res. Inst. Math. Sci. (RIMS), vol. B26, RIMS Kôkyûroku Bessatsu, Kyoto, 2011, pp. 159-175 | MR | Zbl
[37] α-modulation spaces (I) scaling, embedding and algebraic properties, J. Math. Soc. Jpn., Volume 66 (2014), pp. 1315-1373 | MR | Zbl
[38] Estimates for translation invariant operators in spaces, Acta Math., Volume 104 (1960), pp. 93-139 | DOI | MR | Zbl
[39] Navier–Stokes equations and nonlinear heat equations in modulation spaces with negative derivative indices, J. Differ. Equ., Volume 248 (2010), pp. 1972-2002 | DOI | MR | Zbl
[40] Generalized stochastic processes, Department of Mathematics, Technische Hogeschool Eindhoven, Eindhoven, 1976 (T. H. Report, No. 76-WSK-07) | MR | Zbl
[41] Estimates on modulation spaces for Schrödinger evolution operators with quadratic and sub-quadratic potentials, J. Funct. Anal., Volume 266 (2014), pp. 733-753 | DOI | MR | Zbl
[42] Strong solutions of the Navier–Stokes equations in with applications to weak solutions, Math. Z., Volume 187 (1984), pp. 471-480 | DOI | MR | Zbl
[43] Well-posedness for the Navier–Stokes equations, Adv. Math., Volume 157 (2001), pp. 22-35 | DOI | MR | Zbl
[44] The short-time Fourier transform of distributions of exponential type and Tauberian theorems for shift-asymptotics, Filomat, Volume 30 (2016) no. 11, pp. 3047-3061 | DOI | MR
[45] On the analyticity of mild solutions for the Navier–Stokes equations, C. R. Acad. Sci. Paris, Ser. I, Volume 330 (2000), pp. 183-186 | DOI | MR | Zbl
[46] The Navier–Stokes Problem in the 21st Century, CRC Press, Boca Raton, FL, 2016 | DOI | MR
[47] Blow ups of complex solutions of the 3D Navier–Stokes system and renormalization group method, J. Eur. Math. Soc. (JEMS), Volume 10 (2008), pp. 267-313 | DOI | MR | Zbl
[48] Dynamical behavior for the solutions of the Navier-Stokes equation, Commun. Pure Appl. Anal., Volume 17 (2018), pp. 1511-1560 | DOI | MR
[49] On the regularizing rate estimates of Koch-Tataru's solution to the Navier–Stokes equations, Asymptot. Anal., Volume 49 (2006), pp. 1-15 | MR | Zbl
[50] Almost sure existence of global weak solutions for supercritical Navier–Stokes equations, SIAM J. Math. Anal., Volume 45 (2013) no. 6, pp. 3431-3452 | DOI | MR | Zbl
[51] A topological characterization of the Beurling-Björk space using the short-time Fourier transform, CUBO, Volume 8 (2006), pp. 33-45 | MR | Zbl
[52] Global strong solutions in Sobolev or Lebesgue spaces to the incompressible Navier–Stokes equations in , Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 13 (1996), pp. 319-336 | DOI | Numdam | MR | Zbl
[53] Tempered ultradistributions, Boll. Unione Mat. Ital., B (7), Volume 2 (1988), pp. 235-251 | MR | Zbl
[54] Les séries de multipôles des physiciens et la théorie des ultradistributions, Math. Ann., Volume 174 (1967), pp. 109-142 | DOI | MR | Zbl
[55] Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, NJ, 1993 | MR | Zbl
[56] The dilation property of modulation spaces and their inclusion relation with Besov spaces, J. Funct. Anal., Volume 248 (2007), pp. 79-106 | DOI | MR | Zbl
[57] Ultradistributions and time–frequency analysis (Boggiatto, P.; Rodino, L.; Toft, J.; Wong, M.W., eds.), Pseudo-Differential Operators and Related Topics, Operator Theory: Advances and Applications, vol. 164, Birkhäuser, Basel, 2006, pp. 173-191 | DOI | MR | Zbl
[58] Modulation spaces, Gelfand-Shilov spaces and pseudodifferential operators, Sampl. Theory Signal Image Process., Int. J., Volume 5 (2006), pp. 225-242 | MR | Zbl
[59] The Bargmann transform on modulation and Gelfand-Shilov spaces, with applications to Toeplitz and pseudo-differential operators, J. Pseudo-Differ. Oper. Appl., Volume 3 (2012), pp. 145-227 | DOI | MR | Zbl
[60] Theory of Function Spaces, Birkhäuser–Verlag, 1983 | DOI | MR | Zbl
[61] Ill-posedness for the Navier-Stokes equation in critical Besov spaces , Adv. Math., Volume 268 (2015), pp. 350-372 | DOI | MR | Zbl
[62] Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations, J. Differ. Equ., Volume 239 (2007), pp. 213-250 | DOI | MR | Zbl
[63] Harmonic Analysis Methods for Nonlinear Evolution Equations, World Scientific, Hackensack, NJ, 2011 | DOI | MR | Zbl
[64] Isometric decomposition operators, function spaces and their applications to nonlinear evolution equations, J. Funct. Anal., Volume 233 (2006), pp. 1-39 | DOI | MR | Zbl
[65] Ill-posedness of the 3D Navier–Stokes equations in a generalized Besov space near , J. Funct. Anal., Volume 258 (2010), pp. 3376-3387 | DOI | MR | Zbl
[66] Random data Cauchy theory for the incompressible three dimensional Navier–Stokes equations, Proc. Am. Math. Soc., Volume 139 (2011) no. 8, pp. 2827-2837 | DOI | MR | Zbl
Cité par Sources :