Conserved quantities and Hamiltonization of nonholonomic systems
Annales de l'I.H.P. Analyse non linéaire, janvier – février 2021, Tome 38 (2021) no. 1, pp. 23-60.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

This paper studies hamiltonization of nonholonomic systems using geometric tools, building on [1,5]. The main novelty in this paper is the use of symmetries and suitable first integrals of the system to explicitly define a new bracket on the reduced space that codifies the nonholonomic dynamics and carries, additionally, an almost symplectic foliation (determined by the common level sets of the first integrals); in particular cases of interest, this new bracket is a Poisson structure that hamiltonizes the system. Our construction of the new bracket is based on a gauge transformation of the nonholonomic bracket by a global 2-form that we explicitly describe. We study various geometric features of the reduced brackets and apply our formulas to obtain a geometric proof of the hamiltonization of a homogeneous ball rolling without sliding in the interior side of a convex surface of revolution.

DOI : 10.1016/j.anihpc.2020.05.003
Mots-clés : Nonholonomic systems, Hamiltonization, Geometric mechanics, Poisson brackets
Balseiro, Paula 1 ; Yapu, Luis P. 1

1 Universidade Federal Fluminense, Instituto de Matemática e Estatística, Rua Prof. Marcos Waldemar de Freitas Reis S/N (Campus do Gragoatá), CEP 24210-201, Niteroi, Rio de Janeiro, Brazil
@article{AIHPC_2021__38_1_23_0,
     author = {Balseiro, Paula and Yapu, Luis P.},
     title = {Conserved quantities and {Hamiltonization} of nonholonomic systems},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {23--60},
     publisher = {Elsevier},
     volume = {38},
     number = {1},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.05.003},
     mrnumber = {4200476},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.05.003/}
}
TY  - JOUR
AU  - Balseiro, Paula
AU  - Yapu, Luis P.
TI  - Conserved quantities and Hamiltonization of nonholonomic systems
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 23
EP  - 60
VL  - 38
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.05.003/
DO  - 10.1016/j.anihpc.2020.05.003
LA  - en
ID  - AIHPC_2021__38_1_23_0
ER  - 
%0 Journal Article
%A Balseiro, Paula
%A Yapu, Luis P.
%T Conserved quantities and Hamiltonization of nonholonomic systems
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 23-60
%V 38
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.05.003/
%R 10.1016/j.anihpc.2020.05.003
%G en
%F AIHPC_2021__38_1_23_0
Balseiro, Paula; Yapu, Luis P. Conserved quantities and Hamiltonization of nonholonomic systems. Annales de l'I.H.P. Analyse non linéaire, janvier – février 2021, Tome 38 (2021) no. 1, pp. 23-60. doi : 10.1016/j.anihpc.2020.05.003. http://www.numdam.org/articles/10.1016/j.anihpc.2020.05.003/

[1] Balseiro, P. The jacobiator of nonholonomic systems and the geometry of reduced nonholonomic brackets, Arch. Ration. Mech. Anal., Volume 214 (2014) no. 2, pp. 453-501 | DOI | MR | Zbl

[2] Balseiro, P. Hamiltonization of solids of revolution through reduction, J. Nonlinear Sci., Volume 27 (2017) no. 3, pp. 2001-2035 | DOI | MR

[3] Balseiro, P. A global version of the Koon-Marsden jacobiator formula, geometry, mechanics, and dynamics, the legacy of Jerry Marsden, Fields Inst. Commun., Volume 73 (2015), pp. 1-17 | DOI | MR

[4] Balseiro, P.; Fernandez, O.E. Reduction of nonholonomic systems in two stages, Nonlinearity, Volume 28 (2015), pp. 2873-2912 | DOI | MR

[5] Balseiro, P.; Garcia-Naranjo, L. Gauge transformations, twisted Poisson brackets and Hamiltonization of nonholonomic systems, Arch. Ration. Mech. Anal., Volume 205 (2012) no. 1, pp. 267-310 | DOI | MR | Zbl

[6] Balseiro, P.; Sansonetto, N. A geometric characterization of certain first integrals for nonholonomic systems with symmetries, SIGMA, Volume 12 (2016) no. 018 (14 pages) | MR

[7] Bates, L.; Graumann, H.; MacDonell, C. Examples of gauge conservations laws in nonholonomic systems, Rep. Math. Phys., Volume 37 (1996), pp. 295-308 | DOI | MR | Zbl

[8] Bates, L.; Śniatycki, J. Nonholonomic reduction, Rep. Math. Phys., Volume 32 (1993) no. 1, pp. 99-115 | DOI | MR | Zbl

[9] Bloch, A.M. Nonholonomic Mechanics and Control, Interdisciplinary Applied Mathematics, Springer-Verlag, Berlin, 2000

[10] Bloch, A.M.; Krishnapasad, P.S.; Marsden, J.E.; Murray, R.M. Nonholonomic mechanical systems with symmetry, Arch. Ration. Mech. Anal., Volume 136 (1996), pp. 21-99 | DOI | MR | Zbl

[11] Bolsinov, A.V.; Borisov, A.V.; Mamaev, I.S. Hamiltonisation of non-holonomic systems in the neighborhood of invariant manifolds, Regul. Chaotic Dyn., Volume 116 (2011) no. 5, pp. 443-464 | DOI | MR

[12] Bolsinov, A.V.; Kilin, A.A.; Kazakov, A.O. Topological monodromy as an obstruction to Hamiltonization of nonholonomic systems: pro or contra?, J. Geom. Phys., Volume 87 (2014), pp. 61-75 | DOI | MR | Zbl

[13] Borisov, A.V.; Mamaev, I.S. Chaplygin's ball rolling problem is Hamiltonian, Math. Notes, Volume 70 (2001) no. 5, pp. 720-723 | DOI | MR | Zbl

[14] Borisov, A.V.; Mamaev, I.S. On the history of the development of the nonholonomic dynamics, Regul. Chaotic Dyn., Volume 7 (2002) no. 1, pp. 43-47 | DOI | MR | Zbl

[15] Borisov, A.V.; Mamaev, I.S. The rolling body motion of a rigid body on a plane and a sphere. Hierarchy of dynamics, Regul. Chaotic Dyn., Volume 7 (2002) no. 2, pp. 177-200 | DOI | MR | Zbl

[16] Borisov, A.V.; Kilin, A.A.; Mamaev, I.S. Rolling of a ball on a surface. New integrals and hierarchy of dynamics, Regul. Chaotic Dyn., Volume 7 (2002) no. 2, pp. 201-219 | DOI | MR | Zbl

[17] Cantrijn, F.; De León, M.; Martín de Diego, D. On almost-Poisson structures in nonholonomic mechanics, Nonlinearity, Volume 12 (1999) no. 3, pp. 721-737 | DOI | MR | Zbl

[18] Cantrijn, F.; de Leon, M.; Marrero, J.C.; Martin de Diego, D. Reduction of nonholonomic mechanical systems with symmetries, Rep. Math. Phys., Volume 42 (1998) no. 1–2, pp. 25-45 | DOI | MR | Zbl

[19] Chaplygin, S.A. On a ball's rolling on a horizontal plane, Regular and Chaotic Dynamics, Volume 7 (2002) no. 2, pp. 131-148 (original paper in Math. Collect. Mosc. Math. Soc., 24, 1903, pp. 139-168) | DOI | MR | Zbl

[20] Chaplygin, S.A. On the theory of motion of nonholonomic systems. Theorem on the reducing multiplier, Mat. Sb., Volume 28 (1911) no. 2, pp. 303-314 (in Russian) Regul. Chaotic Dyn., 13, 4, 2008, pp. 369-376 (in English) | MR | Zbl

[21] Cortés Monforte, J. Geometric, Control and Numerical Aspects of Non-Holonomic Systems, Springer-Verlag, 2002 | MR | Zbl

[22] Cortés, J.; Martinez, S. Nonholonomic integrators, Nonlinearity, Volume 14 (2001), pp. 1365-1392 | DOI | MR | Zbl

[23] Cushman, R. Routh's sphere, Rep. Math. Phys., Volume 42 (1998) no. 1–2, pp. 47-70 | DOI | MR | Zbl

[24] Cushman, R.; Bates, L. Global Aspects of Classical Integrable Systems, Birkhäuser, 2015 | MR | Zbl

[25] Cushman, R.; Duistermaat, J.; Śniatycki, J. Geometry of Nonholonomically Constrained Systems, World Scientific, Singapore, 2010 | MR | Zbl

[26] Duistermaat, J.J.; Kolk, J.A.C. Lie Groups, Universitext, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl

[27] Eden, R.J. The quantum mechanics of non-holonomic systems, Proc. R. Soc. Lond. Ser. A, Volume 205 (1951), pp. 583-595 | DOI | MR | Zbl

[28] Eden, R.J. The Hamiltonian dynamics of non-holonomic systems, Proc. R. Soc. Lond. Ser. A, Volume 205 (1951), pp. 564-583 | DOI | MR | Zbl

[29] Ehlers, K.; Koiller, J.; Montgomery, R.; Rios, P.M. Nonholonomic systems via moving frames: Cartan equivalence and Chaplygin hamiltonization. The breath of symplectic and Poisson geometry, Prog. Math., Volume 232 (2005), pp. 75-120 | DOI | MR | Zbl

[30] Fassoò, F.; Giacobbe, A.; Sansonetto, N. Periodic flows, rank-two Poisson structures, and nonholonomic mechanics, Regul. Chaotic Dyn., Volume 10 (2005) no. 3, pp. 267-284 | DOI | MR | Zbl

[31] Fassoò, F.; Giacobbe, A.; Sansonetto, N. Gauge conservation laws and the momentum equation in nonholonomic mechanics, Rep. Math. Phys., Volume 62 (2008) no. 3, pp. 345-367 | DOI | MR | Zbl

[32] Fassoò, F.; Giacobbe, A.; Sansonetto, N. Linear weakly Noetherian constants of motion are horizontal gauge momenta, J. Geom. Mech., Volume 4 (2012), pp. 129-136 | DOI | MR | Zbl

[33] Fedorov, Y.N.; Jovanović, B. Nonholonomic LR systems as generalized Chaplygin systems with an invariant measure and flows on homogeneous spaces, J. Nonlinear Sci., Volume 14 (2004) no. 4, pp. 341-381 | DOI | MR | Zbl

[34] García-Naranjo, L.C. Almost Poisson brackets for nonholonomic systems on Lie groups, University of Arizona, 2007 (Ph.D. dissertation) | MR

[35] García-Naranjo, L.C. Reduction of almost Poisson brackets and hamiltonization of the Chaplygin sphere, Discrete Contin. Dyn. Syst., Ser. S, Volume 3 (2010) no. 1, pp. 37-60 | MR | Zbl

[36] García-Naranjo, L.C.; Montaldi, J. Gauge momenta as Casimir functions of nonholonomic systems, Arch. Ration. Mech. Anal., Volume 228 (2018) no. 2, pp. 563-602 | DOI | MR

[37] García-Naranjo, L.C.; Marrero, J.C. The geometry of nonholonomic Chaplygin systems, Nonlinearity, Volume 33 (2020), pp. 1297-1341 | DOI | MR

[38] García-Naranjo, L.C. Generalisation of Chaplygin's reducing multiplier theorem with an application to multi-dimensional nonholonomic dynamics, J. Phys. A, Math. Theor., Volume 52 (2019) | MR

[39] Hall, J.; Leok, M. Spectral variational integrators, Numer. Math., Volume 130 (2015) no. 4, pp. 681-740 | DOI | MR

[40] Hall, J.; Leok, M. Lie group spectral variational integrators, Found. Comput. Math., Volume 17 (2017) no. 1, pp. 199-257 | DOI | MR

[41] Hermans, J. A symmetric sphere rolling on a surface, Nonlinearity, Volume 8 (1995) no. 4, pp. 493-515 | DOI | MR | Zbl

[42] Ibort, A.; de León, M.; Marrero, J.C.; Martín de Diego, D. Dirac brackets in constrained dynamics, Fortschr. Phys., Volume 47 (1999), pp. 459-492 | DOI | MR | Zbl

[43] Jovanović, B. Some multidimensional integrable cases of nonholonomic rigid body dynamics, Regul. Chaotic Dyn., Volume 8 (2003) no. 1, pp. 125-132 | DOI | MR | Zbl

[44] Jovanović, B. Hamiltonization and integrability of the Chaplygin sphere in Rn , J. Nonlinear Sci., Volume 20 (2010) no. 5, pp. 569-593 | DOI | MR | Zbl

[45] Klimčík, C.; Ströbl, T. WZW-Poisson manifolds, J. Geom. Phys., Volume 43 (2002), pp. 341-344 | DOI | MR | Zbl

[46] Koiller, J. Reduction of some classical nonholonomic systems with symmetry, Arch. Ration. Mech. Anal., Volume 118 (1992), pp. 113-148 | DOI | MR | Zbl

[47] Kozlov, V.V. On the integration theory of equations of nonholonomic mechanics, Regul. Chaotic Dyn., Volume 7 (2002) no. 2, pp. 161-176 | DOI | MR | Zbl

[48] de Leon, M.; Martin de Diego, D.; Santamaria-Merino, A. Geometric integrators and nonholonomic mechanics, J. Math. Phys., Volume 45 (2004) no. 3, pp. 1042-1064 | DOI | MR | Zbl

[49] Marle, C.M. Various approaches to conservative and nonconservative nonholonomic systems, Rep. Math. Phys., Volume 42 (1998), pp. 211-229 | DOI | MR | Zbl

[50] Marle, C.M. On symmetries and constants of motion in Hamiltonian systems with nonholonomic constraints, classical and quantum integrability, Banach Cent. Publ., Volume 59 (2003), pp. 223-242 | DOI | MR | Zbl

[51] Ohsawa, T.; Bloch, A.M. Nonholonomic Hamilton–Jacobi equation and integrability, J. Geom. Mech., Volume 1 (2009), pp. 461-481 | DOI | MR | Zbl

[52] Ohsawa, T.; Fernandez, O.E.; Bloch, A.M.; Zenkov, D.V. Nonholonomic Hamilton-Jacobi theory via Chaplygin Hamiltonization, J. Geom. Phys., Volume 61 (2011) no. 8, pp. 1263-1291 | DOI | MR | Zbl

[53] Ramos, A. Poisson structures for reduced non–holonomic systems, J. Phys. A, Volume 37 (2004), pp. 4821-4842 | DOI | MR | Zbl

[54] Routh, E.J. Treatise on the Dynamics of a System of Rigid Bodies, Dover, New York, 1955 (Advanced Part) | MR | Zbl

[55] Ševera, P.; Weinstein, A. Poisson geometry with a 3-form background, Prog. Theor. Phys., Volume 144 (2001), pp. 145-154 | DOI | MR | Zbl

[56] van der Schaft, A.J.; Maschke, B.M. On the Hamiltonian formulation of nonholonomic mechanical systems, Rep. Math. Phys., Volume 34 (1994), pp. 225-233 | DOI | MR | Zbl

[57] Śniatycki, J. Orbits of families of vector fields on subcartesian spaces, Ann. Inst. Fourier, Volume 53 (2003), pp. 2257-2296 | DOI | Numdam | MR | Zbl

[58] Śniatycki, J. Differential Geometry of Singular Spaces and Reduction of Symmetries, Cambridge University Press, Cambridge, 2013 | DOI | MR | Zbl

[59] Veselov, A.P.; Veselova, L.E.; Notes, Mathematical Integrable nonholonomic systems on Lie groups, Math. Notes, Volume 44 (1988) no. 5, pp. 604-619 (in Russian) (in English)

[60] Zenkov, D.V. The geometry of the Routh problem, J. Nonlinear Sci., Volume 5 (1995), pp. 503-519 | DOI | MR | Zbl

Cité par Sources :