Nontrivial solutions to Serrin's problem in annular domains
Annales de l'I.H.P. Analyse non linéaire, janvier – février 2021, Tome 38 (2021) no. 1, pp. 1-22.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We construct nontrivial bounded, real analytic domains ΩRn of the form Ω0Ω1, bifurcating from annuli, which admit a positive solution to the overdetermined boundary value problem

{Δu=1,u>0 in Ω,u=0,νu=const on Ω0,u=const,νu=const on Ω1,
where ν stands for the inner unit normal to ∂Ω. From results by Reichel [1] and later by Sirakov [2], it was known that the condition νu0 on Ω1 is sufficient for rigidity to hold, namely, the only domains which admit such a solution are annuli and solutions are radially symmetric. Our construction shows that the condition is also necessary. In addition, we show that the constructed domains are self-Cheeger.

DOI : 10.1016/j.anihpc.2020.05.001
Classification : 35N25, 37G25, 47A75, 49Q10
Mots-clés : Overdetermined elliptic problems, Bifurcation methods, Eigenvalues, Cheeger problem
Kamburov, Nikola 1 ; Sciaraffia, Luciano 1

1 Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna 4860, Santiago 7820436, Chile
@article{AIHPC_2021__38_1_1_0,
     author = {Kamburov, Nikola and Sciaraffia, Luciano},
     title = {Nontrivial solutions to {Serrin's} problem in annular domains},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1--22},
     publisher = {Elsevier},
     volume = {38},
     number = {1},
     year = {2021},
     doi = {10.1016/j.anihpc.2020.05.001},
     mrnumber = {4200475},
     zbl = {1462.35211},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.05.001/}
}
TY  - JOUR
AU  - Kamburov, Nikola
AU  - Sciaraffia, Luciano
TI  - Nontrivial solutions to Serrin's problem in annular domains
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2021
SP  - 1
EP  - 22
VL  - 38
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2020.05.001/
DO  - 10.1016/j.anihpc.2020.05.001
LA  - en
ID  - AIHPC_2021__38_1_1_0
ER  - 
%0 Journal Article
%A Kamburov, Nikola
%A Sciaraffia, Luciano
%T Nontrivial solutions to Serrin's problem in annular domains
%J Annales de l'I.H.P. Analyse non linéaire
%D 2021
%P 1-22
%V 38
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2020.05.001/
%R 10.1016/j.anihpc.2020.05.001
%G en
%F AIHPC_2021__38_1_1_0
Kamburov, Nikola; Sciaraffia, Luciano. Nontrivial solutions to Serrin's problem in annular domains. Annales de l'I.H.P. Analyse non linéaire, janvier – février 2021, Tome 38 (2021) no. 1, pp. 1-22. doi : 10.1016/j.anihpc.2020.05.001. http://www.numdam.org/articles/10.1016/j.anihpc.2020.05.001/

[1] Reichel, W. Radial symmetry by moving planes for semilinear elliptic BVPs on annuli and other non-convex domains, Pittman Research Notes in Mathematics, 1995, pp. 164-182 | MR | Zbl

[2] Sirakov, B. Symmetry for exterior elliptic problems and two conjectures in potential theory, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 18 (2001) no. 2, pp. 135-156 | DOI | Numdam | MR | Zbl

[3] Sirakov, B. Overdetermined elliptic problems in physics, Nonlinear PDE's in Condensed Matter and Reactive Flows, Springer, 2002, pp. 273-295 | DOI | Zbl

[4] Serrin, J. A symmetry problem in potential theory, Arch. Ration. Mech. Anal., Volume 43 (1971) no. 4, pp. 304-318 | DOI | MR | Zbl

[5] Alexandrov, A. A characteristic property of spheres, Ann. Mat. Pura Appl., Volume 58 (1962) no. 1, pp. 303-315 | DOI | MR | Zbl

[6] Willms, N.; Gladwell, G.; Siegel, D. Symmetry theorems for some overdetermined boundary value problems on ring domains, Z. Angew. Math. Phys., Volume 45 (1994) no. 4, pp. 556-579 | DOI | MR | Zbl

[7] Khavinson, D.; Solynin, A.Y.; Vassilev, D. Overdetermined boundary value problems, quadrature domains and applications, Comput. Methods Funct. Theory, Volume 5 (2005) no. 1, pp. 19-48 | DOI | MR | Zbl

[8] Crandall, M.G.; Rabinowitz, P.H. Bifurcation from simple eigenvalues, J. Funct. Anal., Volume 8 (1971) no. 2, pp. 321-340 | DOI | MR | Zbl

[9] Giusti, E. Minimal Surfaces and Functions of Bounded Variation, vol. 2, Springer, 1984 | DOI | MR | Zbl

[10] Parini, E. An introduction to the Cheeger problem, Surv. Math. Appl., Volume 6 (2011), pp. 9-21 | MR | Zbl

[11] Leonardi, G.P. An overview on the Cheeger problem, New Trends in Shape Optimization, Springer, 2015, pp. 117-139 | DOI | MR | Zbl

[12] Berestycki, H.; Caffarelli, L.; Nirenberg, L. Monotonicity for elliptic equations in unbounded Lipschitz domains, Commun. Pure Appl. Math., Volume 50 (1997) no. 11, pp. 1089-1111 (A Journal Issued by the Courant Institute of Mathematical Sciences) | DOI | MR | Zbl

[13] Sicbaldi, P. New extremal domains for the first eigenvalue of the Laplacian in flat tori, Calc. Var. Partial Differ. Equ., Volume 37 (2010) no. 3–4, pp. 329-344 | DOI | MR | Zbl

[14] Ros, A.; Ruiz, D.; Sicbaldi, P. Solutions to overdetermined elliptic problems in nontrivial exterior domains, J. Eur. Math. Soc. (2019) | DOI | MR | Zbl

[15] Kielhöfer, H. Bifurcation Theory: An Introduction with Applications to Partial Differential Equations, vol. 156, Springer Science & Business Media, 2011 | MR | Zbl

[16] Schlenk, F.; Sicbaldi, P. Bifurcating extremal domains for the first eigenvalue of the Laplacian, Adv. Math., Volume 229 (2012) no. 1, pp. 602-632 | DOI | MR | Zbl

[17] Fall, M.M.; Minlend, I.A.; Weth, T. Unbounded periodic solutions to Serrin's overdetermined boundary value problem, Arch. Ration. Mech. Anal., Volume 223 (2017) no. 2, pp. 737-759 | DOI | MR | Zbl

[18] Morabito, F.; Sicbaldi, P. Delaunay type domains for an overdetermined elliptic problem in Sn×R and Hn×R , ESAIM Control Optim. Calc. Var., Volume 22 (2016) no. 1, pp. 1-28 | Numdam | MR | Zbl

[19] Fall, M.M.; Minlend, I.A.; Weth, T. Serrin's overdetermined problem on the sphere, Calc. Var. Partial Differ. Equ., Volume 57 (2018) no. 1, p. 3 | DOI | MR | Zbl

[20] De Silva, D. Existence and regularity of monotone solutions to a free boundary problem, Am. J. Math., Volume 131 (2009) no. 2, pp. 351-378 | DOI | MR | Zbl

[21] Hauswirth, L.; Hélein, F.; Pacard, F. On an overdetermined elliptic problem, Pac. J. Math., Volume 250 (2011) no. 2, pp. 319-334 | DOI | MR | Zbl

[22] Kamburov, N. A free boundary problem inspired by a conjecture of De Giorgi, Commun. Partial Differ. Equ., Volume 38 (2013) no. 3, pp. 477-528 | DOI | MR | Zbl

[23] Khavinson, D.; Lundberg, E.; Teodorescu, R. An overdetermined problem in potential theory, Pac. J. Math., Volume 265 (2013) no. 1, pp. 85-111 | DOI | MR | Zbl

[24] Traizet, M. Classification of the solutions to an overdetermined elliptic problem in the plane, Geom. Funct. Anal., Volume 24 (2014) no. 2, pp. 690-720 | DOI | MR | Zbl

[25] Sicbaldi, P. Extremal domains of big volume for the first eigenvalue of the Laplace–Beltrami operator in a compact manifold, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 31 (2014), pp. 1231-1265 | DOI | Numdam | MR | Zbl

[26] Del Pino, M.; Pacard, F.; Wei, J. Serrin's overdetermined problem and constant mean curvature surfaces, Duke Math. J., Volume 164 (2015) no. 14, pp. 2643-2722 | DOI | MR | Zbl

[27] Delay, E.; Sicbaldi, P. Extremal domains for the first eigenvalue in a general compact Riemannian manifold, Discrete Contin. Dyn. Syst., Ser. A, Volume 35 (2015) no. 12, pp. 5799-5825 | DOI | MR | Zbl

[28] Fall, M.M.; Minlend, I.A. Serrin's over-determined problem on Riemannian manifolds, Adv. Calc. Var., Volume 8 (2015) no. 4, pp. 371-400 | DOI | MR | Zbl

[29] Liu, Y.; Wang, K.; Wei, J. On one phase free boundary problem in Rn , 2017 (arXiv preprint) | arXiv | MR | Zbl

[30] Jerison, D.; Perera, K. Higher critical points in an elliptic free boundary problem, J. Geom. Anal., Volume 28 (2018) no. 2, pp. 1258-1294 | DOI | MR | Zbl

[31] Cavallina, L.; Magnanini, R.; Sakaguchi, S. Two-phase heat conductors with a surface of the constant flow property, 2018 (arXiv preprint) | arXiv | MR | Zbl

[32] Kinderlehrer, D.; Nirenberg, L. Regularity in free boundary problems, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 4 (1977) no. 2, pp. 373-391 | Numdam | MR | Zbl

[33] Minlend, I.A. Existence of self-Cheeger sets on Riemannian manifolds, Arch. Math., Volume 109 (2017) no. 4, pp. 393-400 | DOI | MR | Zbl

Cité par Sources :