This paper is interested in the description of the density of particles evolving according to some optimal policy of an impulse control problem. We first fix the sets from which the particles jump and explain how we can characterize such a density. We then investigate the coupled case in which the underlying impulse control problem depends on the density we are looking for: the mean field game of impulse control. In both cases, we give a variational characterization of the densities of jumping particles.
@article{AIHPC_2020__37_5_1211_0, author = {Bertucci, Charles}, title = {Fokker-Planck equations of jumping particles and mean field games of impulse control}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1211--1244}, publisher = {Elsevier}, volume = {37}, number = {5}, year = {2020}, doi = {10.1016/j.anihpc.2020.04.006}, mrnumber = {4138232}, zbl = {1456.49030}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.04.006/} }
TY - JOUR AU - Bertucci, Charles TI - Fokker-Planck equations of jumping particles and mean field games of impulse control JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 1211 EP - 1244 VL - 37 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2020.04.006/ DO - 10.1016/j.anihpc.2020.04.006 LA - en ID - AIHPC_2020__37_5_1211_0 ER -
%0 Journal Article %A Bertucci, Charles %T Fokker-Planck equations of jumping particles and mean field games of impulse control %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 1211-1244 %V 37 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2020.04.006/ %R 10.1016/j.anihpc.2020.04.006 %G en %F AIHPC_2020__37_5_1211_0
Bertucci, Charles. Fokker-Planck equations of jumping particles and mean field games of impulse control. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 5, pp. 1211-1244. doi : 10.1016/j.anihpc.2020.04.006. http://www.numdam.org/articles/10.1016/j.anihpc.2020.04.006/
[1] Mean field games: numerical methods, SIAM J. Numer. Anal., Volume 48 (2010) no. 3, pp. 1136–1162 | MR | Zbl
[2] A long-term mathematical model for mining industries, Appl. Math. Optim., Volume 74 (2016) no. 3, pp. 579–618 | MR | Zbl
[3] Nonzero-sum stochastic games with impulse controls, 2019 (arXiv preprint) | arXiv
[4] Impulse Control and Quasi-Variational Inequalities, Gaunthier-Villars, 1984 | MR
[5] Optimal stopping in mean field games, an obstacle problem approach, J. Math. Pures Appl. (2017) | MR | Zbl
[6] Proximal methods for stationary mean field games with local couplings, SIAM J. Control Optim., Volume 56 (2018) no. 2, pp. 801–836 | MR | Zbl
[7] Parabolic equations in time-dependent domains, J. Evol. Equ., Volume 17 (2017) no. 2, pp. 781–804 | MR | Zbl
[8] Notes on mean field games, 2010 (Technical report)
[9] Learning in mean field games: the fictitious play, ESAIM Control Optim. Calc. Var., Volume 23 (2017) no. 2, pp. 569–591 | Numdam | MR | Zbl
[10] Long time behavior of the master equation in mean-field game theory, 2017 (arXiv preprint) | arXiv
[11] The master equation and the convergence problem in mean field games, 2015 (arXiv preprint) | arXiv
[12] Second order mean field games with degenerate diffusion and local coupling, Nonlinear Differ. Equ. Appl., Volume 22 (2015) no. 5, pp. 1287–1317 | MR | Zbl
[13] Probabilistic analysis of mean-field games, SIAM J. Control Optim., Volume 51 (2013) no. 4, pp. 2705–2734 | MR | Zbl
[14] Probabilistic Theory of Mean Field Games with Applications I-II, Springer, 2017 | MR
[15] Mean field games of timing and models for bank runs, Appl. Math. Optim., Volume 76 (2017) no. 1, pp. 217–260 | MR | Zbl
[16] Mean field games with singular controls, SIAM J. Control Optim., Volume 55 (2017) no. 6, pp. 3833–3868 | MR | Zbl
[17] Abstract evolution equations on variable domains: an approach by minimizing movements, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 23 (1996) no. 1, pp. 149–178 | Numdam | MR | Zbl
[18] Obstacle mean-field game problem, Interfaces Free Bound., Volume 17 (2015) no. 1, pp. 55–68 | MR | Zbl
[19] Weakly coupled mean-field game systems, Nonlinear Anal., Volume 144 (2016), pp. 110–138 | MR | Zbl
[20] A reference case for mean field games models, J. Math. Pures Appl., Volume 92 (2009) no. 3, pp. 276–294 | MR | Zbl
[21] Mean field games and applications, Paris-Princeton Lectures on Mathematical Finance 2010, Springer, 2011, pp. 205–266 | MR | Zbl
[22] Mean field games with singular controls of bounded velocity, 2017 (arXiv preprint) | arXiv
[23] Large population stochastic dynamic games: closed-loop McKean-Vlasov systems and the Nash certainty equivalence principle, Commun. Inf. Syst., Volume 6 (2006) no. 3, pp. 221–252 | MR | Zbl
[24] A generalization of Brouwer's fixed point theorem, Duke Math. J., Volume 8 (1941) no. 3, pp. 457–459 | MR | Zbl
[25] Linear operators leaving invariant a cone in a Banach space, Usp. Mat. Nauk, Volume 3 (1948) no. 1, pp. 3–95 | MR | Zbl
[26] Mean field games via controlled martingale problems: existence of Markovian equilibria, Stoch. Process. Appl., Volume 125 (2015) no. 7, pp. 2856–2894 | MR | Zbl
[27] A uniqueness theorem for elliptic quasi-variational inequalities, J. Funct. Anal., Volume 18 (1975) no. 3, pp. 286–287 | MR | Zbl
[28] Jeux à champ moyen. I–le cas stationnaire, C. R. Math., Volume 343 (2006) no. 9, pp. 619–625 | MR | Zbl
[29] Jeux à champ moyen. II–horizon fini et contrôle optimal, C. R. Math., Volume 343 (2006) no. 10, pp. 679–684 | MR | Zbl
[30] Mean field games, Jpn. J. Math., Volume 2 (2007) no. 1, pp. 229–260 | MR | Zbl
[31] Cours au college de france, 2011 www.college-de-france.fr (2007)
[32] A mean field game of optimal stopping, 2016 (arXiv preprint) | arXiv | MR
[33] Analysis and computation of probability density functions for a 1-d impulsively controlled diffusion process, C. R. Math., Volume 357 (2019) no. 3, pp. 306–315 | MR | Zbl
Cité par Sources :