We establish the existence of solutions of the Cauchy problem for a higher-order semilinear parabolic equation by introducing a new majorizing kernel. We also study necessary conditions on the initial data for the existence of local-in-time solutions and identify the strongest singularity of the initial data for the solvability of the Cauchy problem.
@article{AIHPC_2020__37_5_1185_0, author = {Ishige, Kazuhiro and Kawakami, Tatsuki and Okabe, Shinya}, title = {Existence of solutions for a higher-order semilinear parabolic equation with singular initial data}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1185--1209}, publisher = {Elsevier}, volume = {37}, number = {5}, year = {2020}, doi = {10.1016/j.anihpc.2020.04.002}, mrnumber = {4138231}, zbl = {1454.35222}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.04.002/} }
TY - JOUR AU - Ishige, Kazuhiro AU - Kawakami, Tatsuki AU - Okabe, Shinya TI - Existence of solutions for a higher-order semilinear parabolic equation with singular initial data JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 1185 EP - 1209 VL - 37 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2020.04.002/ DO - 10.1016/j.anihpc.2020.04.002 LA - en ID - AIHPC_2020__37_5_1185_0 ER -
%0 Journal Article %A Ishige, Kazuhiro %A Kawakami, Tatsuki %A Okabe, Shinya %T Existence of solutions for a higher-order semilinear parabolic equation with singular initial data %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 1185-1209 %V 37 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2020.04.002/ %R 10.1016/j.anihpc.2020.04.002 %G en %F AIHPC_2020__37_5_1185_0
Ishige, Kazuhiro; Kawakami, Tatsuki; Okabe, Shinya. Existence of solutions for a higher-order semilinear parabolic equation with singular initial data. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 5, pp. 1185-1209. doi : 10.1016/j.anihpc.2020.04.002. http://www.numdam.org/articles/10.1016/j.anihpc.2020.04.002/
[1] On the Cauchy problem and initial traces for a class of evolution equations with strongly nonlinear sources, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 18 (1991), pp. 363–441 | Numdam | MR | Zbl
[2] Local and global solvability of a class of semilinear parabolic equations, J. Differ. Equ., Volume 68 (1987), pp. 238–252 | DOI | MR | Zbl
[3] Critère d'existence de solutions positives pour des équations semi-linéaires non monotones, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 2 (1985), pp. 185–212 | DOI | Numdam | MR | Zbl
[4] Estimates of heat kernel of fractional Laplacian perturbed by gradient operators, Commun. Math. Phys., Volume 271 (2007), pp. 179–198 | DOI | MR | Zbl
[5] Far field asymptotics of solutions to convection equation with anomalous diffusion, J. Evol. Equ., Volume 8 (2008), pp. 307–326 | DOI | MR | Zbl
[6] A nonlinear heat equation with singular initial data, J. Anal. Math., Volume 68 (1996), pp. 277–304 | DOI | MR | Zbl
[7] Existence and nonexistence of global solutions of higher-order parabolic problems with slow decay initial data, J. Math. Anal. Appl., Volume 279 (2003), pp. 710–722 | DOI | MR | Zbl
[8] Local and global existence of solutions to semilinear parabolic initial value problems, Nonlinear Anal., Volume 43 (2001), pp. 293–323 | MR | Zbl
[9] Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics, CRC Press, Boca Raton, 1992 | MR | Zbl
[10] Decay and eventual local positivity for biharmonic parabolic equations, Discrete Contin. Dyn. Syst., Volume 21 (2008), pp. 1129–1157 | DOI | MR | Zbl
[11] Partial Differential Equations of Parabolic Type, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1964 | MR | Zbl
[12] Existence and nonexistence of solutions for the heat equation with a superlinear source term, J. Math. Pures Appl., Volume 118 (2018), pp. 128–158 | DOI | MR | Zbl
[13] Global solutions for superlinear parabolic equations involving the biharmonic operator for initial data with optimal slow decay, Calc. Var. Partial Differ. Equ., Volume 30 (2007), pp. 389–415 | DOI | MR | Zbl
[14] Existence and blow-up for higher-order semilinear parabolic equations: majorizing order-preserving operators, Indiana Univ. Math. J., Volume 51 (2002), pp. 1321–1338 | DOI | MR | Zbl
[15] Nonlinear Partial Differential Equations – Asymptotic Behavior of Solutions and Self-Similar Solutions, Birkhäuser, Boston, 2010 | DOI | MR | Zbl
[16] Existence of solutions for a fractional semilinear parabolic equation with singular initial data, Nonlinear Anal., Volume 175 (2018), pp. 108–132 | DOI | MR | Zbl
[17] Solvability of the heat equation with a nonlinear boundary condition, SIAM J. Math. Anal., Volume 51 (2019), pp. 565–594 | DOI | MR | Zbl
[18] Sharp upper bound for lifespan of solutions to some critical semilinear parabolic, dispersive and hyperbolic equations via a test function method, Nonlinear Anal., Volume 182 (2019), pp. 57–74 | DOI | MR | Zbl
[19] Global solutions for a nonlinear integral equation with a generalized heat kernel, Discrete Contin. Dyn. Syst., Ser. S, Volume 7 (2014), pp. 767–783 | MR | Zbl
[20] Asymptotics for a nonlinear integral equation with a generalized heat kernel, J. Evol. Equ., Volume 14 (2014), pp. 749–777 | DOI | MR | Zbl
[21] Blow up for a fourth order parabolic equation with gradient nonlinearity, SIAM J. Math. Anal., Volume 52 (2020), pp. 927–953 | DOI | MR | Zbl
[22] Heat equation with a nonlinear boundary condition and uniformly local spaces, Discrete Contin. Dyn. Syst., Volume 36 (2016), pp. 2627–2652 | MR | Zbl
[23] Semilinear heat equations and the Navier-Stokes equation with distributions in new function spaces as initial data, Commun. Partial Differ. Equ., Volume 19 (1994), pp. 959–1014 | DOI | MR | Zbl
[24] Superlinear Parabolic Problems – Blow-up, Global Existence and Steady States, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2007 | MR | Zbl
[25] Supersolutions for a class of semilinear heat equations, Rev. Mat. Complut., Volume 26 (2013), pp. 341–360 | DOI | MR | Zbl
[26] Solvability of a semilinear parabolic equation with measures as initial data, Geometric Properties for Parabolic and Elliptic PDE's, Springer Proc. Math. Sta., vol. 176, 2016, pp. 257–276 | MR
[27] The nonlinear heat equation with high order mixed derivatives of the Dirac delta as initial values, Trans. Am. Math. Soc., Volume 366 (2014), pp. 505–530 | MR | Zbl
[28] Local existence and nonexistence for semilinear parabolic equations in , Indiana Univ. Math. J., Volume 29 (1980), pp. 79–102 | DOI | MR | Zbl
[29] Existence and nonexistence of global solutions for a semilinear heat equation, Isr. J. Math., Volume 38 (1981), pp. 29–40 | DOI | MR | Zbl
Cité par Sources :