It is by now well known that the use of Carleman estimates allows to establish the controllability to trajectories of nonlinear parabolic equations. However, by this approach, it is not clear how to decide whether a given function is indeed reachable. In this paper, we pursue the study of the reachable states of parabolic equations based on a direct approach using control inputs in Gevrey spaces by considering a semilinear heat equation in dimension one. The nonlinear part is assumed to be an analytic function of the spatial variable x, the unknown y, and its derivative . By investigating carefully a nonlinear Cauchy problem in the spatial variable and the relationship between the jet of space derivatives and the jet of time derivatives, we derive an exact controllability result for small initial and final data that can be extended as analytic functions on some ball of the complex plane.
Mots-clés : Semilinear heat equation, Exact controllability, Ill-posed problems, Gevrey class, Reachable states
@article{AIHPC_2020__37_4_1047_0, author = {Laurent, Camille and Rosier, Lionel}, title = {Exact controllability of semilinear heat equations in spaces of analytic functions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1047--1073}, publisher = {Elsevier}, volume = {37}, number = {4}, year = {2020}, doi = {10.1016/j.anihpc.2020.03.001}, mrnumber = {4104834}, zbl = {1448.93030}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.03.001/} }
TY - JOUR AU - Laurent, Camille AU - Rosier, Lionel TI - Exact controllability of semilinear heat equations in spaces of analytic functions JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 1047 EP - 1073 VL - 37 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2020.03.001/ DO - 10.1016/j.anihpc.2020.03.001 LA - en ID - AIHPC_2020__37_4_1047_0 ER -
%0 Journal Article %A Laurent, Camille %A Rosier, Lionel %T Exact controllability of semilinear heat equations in spaces of analytic functions %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 1047-1073 %V 37 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2020.03.001/ %R 10.1016/j.anihpc.2020.03.001 %G en %F AIHPC_2020__37_4_1047_0
Laurent, Camille; Rosier, Lionel. Exact controllability of semilinear heat equations in spaces of analytic functions. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 4, pp. 1047-1073. doi : 10.1016/j.anihpc.2020.03.001. http://www.numdam.org/articles/10.1016/j.anihpc.2020.03.001/
[1] On the reachable set for the one-dimensional heat equation, SIAM J. Control Optim., Volume 56 (2018) no. 3, pp. 1692–1715 | DOI | MR | Zbl
[2] An abstract Cauchy-Kowaleska theorem in scales of Gevrey classes, Symposia Math., vol. 7, Academic, New York, NY, USA, 1971, pp. 135–163 | MR | Zbl
[3] Motion planning for a nonlinear Stefan problem, ESAIM Control Optim. Calc. Var., Volume 9 (2003), pp. 275–296 | DOI | Numdam | MR | Zbl
[4] Controllability of parabolic equations, Mat. Sb., Volume 186 (1995) no. 6, pp. 109–132 | MR | Zbl
[5] Controllability of Evolution Equations, Lectures Notes Series, vol. 34, Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996 | MR | Zbl
[6] Null boundary controllability for semilinear heat equations, Appl. Math. Optim., Volume 32 (1995), pp. 281–316 | MR | Zbl
[7] From the reachable space of the heat equation to Hilbert spaces of homorphic functions (preprint) | HAL | MR
[8] Sur les ondes de surfaces de l'eau avec une justification mathématique des équations des ondes en eau peu profonde, J. Math. Kyoto Univ., Volume 19 (1979) no. 2, pp. 335–370 | MR | Zbl
[9] On the Cauchy problem for non linear PDEs in the Gevrey class with shrinkings, J. Math. Soc. Jpn., Volume 54 (2002) no. 3, pp. 649–677 | DOI | MR | Zbl
[10] Analyticity at the boundary of solutions of nonlinear second-order parabolic equations, Commun. Pure Appl. Math., Volume 31 (1978), pp. 283–338 | DOI | MR | Zbl
[11] C. Laurent, I. Rivas, L. Rosier, Exact controllability of 1D anisotropic equations in spaces of analytic functions, in preparation.
[12] Motion planning for the heat equation, Int. J. Robust Nonlinear Control, Volume 10 (2000) no. 8, pp. 629–643 | DOI | MR | Zbl
[13] The heat and Schrödinger equations: boundary control with one shot, Control Methods in PDE-Dynamical Systems, Contemp. Math., vol. 426, Amer. Math. Soc., 2007, pp. 293–305 | MR | Zbl
[14] Exact controllability of a linear Korteweg-de Vries equation by the flatness approach, SIAM J. Control Optim., Volume 57 (2019) no. 4, pp. 2467–2486 | DOI | MR | Zbl
[15] Null controllability of the heat equation using flatness, Automatica, Volume 50 (2014), pp. 3067–3076 | DOI | MR | Zbl
[16] Null controllability of one-dimensional parabolic equations by the flatness approach, SIAM J. Control Optim., Volume 54 (2016) no. 1, pp. 198–220 | DOI | MR | Zbl
[17] On the reachable states for the boundary control of the heat equation, Appl. Math. Res. Express (2016) no. 2, pp. 181–216 | DOI | MR | Zbl
[18] Controllability of the 1D Schrödinger equation using flatness, Automatica, Volume 91 (2018), pp. 208–216 | DOI | MR | Zbl
[19] Control of Higher-Dimensional PDEs – Flatness and Backstepping Designs, Communications and Control Engineering Series, Springer, Heidelberg, 2013 | DOI | MR | Zbl
[20] An abstract form of the nonlinear Cauchy-Kowalewski theorem, J. Differ. Geom., Volume 6 (1972), pp. 561–576 | DOI | MR | Zbl
[21] A note on a theorem of Nirenberg, J. Differ. Geom., Volume 12 (1977), pp. 629–633 | DOI | MR | Zbl
[22] On E. Borel's theorem, Math. Ann., Volume 282 (1988) no. 2, pp. 299–313 | MR | Zbl
[23] Principles of Mathematical Analysis, Mc Graw-Hill, Inc., 1987
[24] Flatness of semilinear parabolic PDEs–a generalized Cauchy-Kowalevski approach, IEEE Trans. Autom. Control, Volume 58 (2013) no. 9, pp. 2277–2291 | DOI | MR | Zbl
[25] A Cauchy-Kovalevskaja type theorem in the Gevrey class with a vector-valued time variable, Commun. Partial Differ. Equ., Volume 17 (1992) no. 9–10, pp. 1457–1502 | MR | Zbl
Cité par Sources :