In this paper we study the bilinear-control problem for the linear and non-linear Schrödinger equation with harmonic potential. By the means of different examples, we show how space-time smoothing effects (Strichartz estimates, Kato smoothing effect) enjoyed by the linear flow, can help to prove obstructions to controllability.
Mots-clés : Control theory, Bilinear control, Obstructions, Non-linear Schrödinger equation
@article{AIHPC_2020__37_3_605_0, author = {Chambrion, Thomas and Thomann, Laurent}, title = {On the bilinear control of the {Gross-Pitaevskii} equation}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {605--626}, publisher = {Elsevier}, volume = {37}, number = {3}, year = {2020}, doi = {10.1016/j.anihpc.2020.01.001}, mrnumber = {4093621}, zbl = {1437.35681}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2020.01.001/} }
TY - JOUR AU - Chambrion, Thomas AU - Thomann, Laurent TI - On the bilinear control of the Gross-Pitaevskii equation JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 605 EP - 626 VL - 37 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2020.01.001/ DO - 10.1016/j.anihpc.2020.01.001 LA - en ID - AIHPC_2020__37_3_605_0 ER -
%0 Journal Article %A Chambrion, Thomas %A Thomann, Laurent %T On the bilinear control of the Gross-Pitaevskii equation %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 605-626 %V 37 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2020.01.001/ %R 10.1016/j.anihpc.2020.01.001 %G en %F AIHPC_2020__37_3_605_0
Chambrion, Thomas; Thomann, Laurent. On the bilinear control of the Gross-Pitaevskii equation. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 605-626. doi : 10.1016/j.anihpc.2020.01.001. http://www.numdam.org/articles/10.1016/j.anihpc.2020.01.001/
[1] Controllability for distributed bilinear systems, SIAM J. Control Optim., Volume 20 (1982) no. 4, pp. 575–597 | DOI | MR | Zbl
[2] Local controllability of a 1-D Schrödinger equation, J. Math. Pures Appl. (9), Volume 84 (2005) no. 7, pp. 851–956 | DOI | MR | Zbl
[3] Local controllability and non controllability of a 1D wave equation, J. Differ. Equ., Volume 250 (2011), pp. 2064–2098 | DOI | MR | Zbl
[4] Local exact controllability of a one-dimensional nonlinear Schrödinger equation, SIAM J. Control Optim., Volume 53 (2015) no. 5, pp. 2781–2818 | DOI | MR | Zbl
[5] Local controllability of 1D linear and nonlinear Schrödinger equations with bilinear control, J. Math. Pures Appl. (9), Volume 94 (2010) no. 5, pp. 520–554 | DOI | MR | Zbl
[6] Bilinear control of high frequencies for a 1D Schrödinger equation, Math. Control Signals Syst., Volume 29 (2017) no. 2 | DOI | MR | Zbl
[7] Weakly coupled systems in quantum control, IEEE Trans. Autom. Control, Volume 58 (2013) no. 9, pp. 2205–2216 | DOI | MR | Zbl
[8] On the Ball–Marsden–Slemrod obstruction in bilinear control systems, Proceedings of the 58th IEEE Conference on Decision and Control (CDC), 2019 (to appear)
[9] Remarks on the Gibbs measures for nonlinear dispersive equations, Ann. Fac. Sci. Toulouse Math. (6), Volume 27 (2018) no. 3, pp. 527–597 | DOI | Numdam | MR | Zbl
[10] Nonlinear Schrödinger equation with time dependent potential, Commun. Math. Sci., Volume 9 (2011) no. 4, pp. 937–964 | DOI | MR | Zbl
[11] Controllability of the discrete-spectrum Schrödinger equation driven by an external field, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009) no. 1, pp. 329–349 | DOI | Numdam | MR | Zbl
[12] A topological obstruction to the controllability of nonlinear wave equations with bilinear control term, SIAM J. Control Optim., Volume 57 (2019) no. 4, pp. 2315–2327 | DOI | MR | Zbl
[13] Optimal bilinear control of Gross-Pitaevskii equations with Coulombian potentials, J. Differ. Equ., Volume 260 (2016) no. 3, pp. 2973–2993 | DOI | MR | Zbl
[14] Optimal bilinear control of nonlinear Schrödinger equations with singular potentials, Nonlinear Anal., Volume 107 (2014), pp. 12–21 | DOI | MR | Zbl
[15] A construction of the fundamental solution for the Schrödinger equation, J. Anal. Math., Volume 35 (1979), pp. 41–96 | DOI | MR | Zbl
[16] Optimal bilinear control of Gross-Pitaevskii equations, SIAM J. Control Optim., Volume 51 (2013) no. 3, pp. 2509–2543 | DOI | MR | Zbl
[17] Limitations on the control of Schrödinger equations, ESAIM Control Optim. Calc. Var., Volume 12 (2006) no. 4, pp. 615–635 | DOI | Numdam | MR | Zbl
[18] Controllability of Partial Differential Equations Governed by Multiplicative Controls, Lecture Notes in Mathematics, vol. 1995, Springer-Verlag, Berlin, 2010 (xvi+284 pp.) | DOI | MR | Zbl
[19] Generic controllability properties for the bilinear Schrödinger equation, Partial Differ. Equ., Volume 35 (2010) no. 4, pp. 685–706 | MR | Zbl
[20] Controllability of quantum harmonic oscillators, IEEE Trans. Autom. Control, Volume 49 (2004) no. 5, pp. 745–747 | DOI | MR | Zbl
[21] On some Schrödinger and wave equations with time dependent potentials, Math. Ann., Volume 334 (2006) no. 2, pp. 325–338 | DOI | MR | Zbl
[22] Global exact controllability in infinite time of Schrödinger equation, J. Math. Pures Appl. (9), Volume 97 (2012) no. 4, pp. 295–317 | DOI | MR | Zbl
[23] Solutions globales pour des équations de Schrödinger sur-critiques en toutes dimensions (Preprint) | arXiv
[24] Solutions globales pour l'équation de Schrödinger cubique en dimension 3 (Preprint) | arXiv
[25] Local exact bilinear control of the Schrödinger equation, ESAIM Control Optim. Calc. Var., Volume 22 (2016) no. 4, pp. 1264–1281 | Numdam | MR | Zbl
[26] Controllability of the cubic Schroedinger equation via a low-dimensional source term, Math. Control Relat. Fields, Volume 2 (2012) no. 3, pp. 247–270 | DOI | MR | Zbl
[27] Euler equations are not exactly controllable by a finite-dimensional external force, Physica D, Volume 237 (2008) no. 10–12, pp. 1317–1323 | MR | Zbl
[28] Tools for PDE. Pseudodifferential Operators, Paradifferential Operators, and Layer Potentials, Mathematical Surveys and Monographs, vol. 81, American Mathematical Society, Providence, RI, 2000 | MR | Zbl
[29] On the controllability of bilinear quantum systems, Mathematical Models and Methods for Ab Initio Quantum Chemistry, Lecture Notes in Chem., vol. 74, Springer, Berlin, 2000, pp. 75–92 | MR | Zbl
[30] Local smoothing property and Strichartz inequality for Schrödinger equations with potentials superquadratic at infinity, J. Differ. Equ. (2004) no. 1, pp. 81–110 | DOI | MR | Zbl
Cité par Sources :