Given a piecewise map of the interval, possibly with critical points and discontinuities, we construct a symbolic model for invariant probability measures with nonuniform expansion that do not approach the critical points and discontinuities exponentially fast almost surely. More specifically, for each we construct a finite-to-one Hölder continuous map from a countable topological Markov shift to the natural extension of the interval map, that codes the lifts of all invariant probability measures as above with Lyapunov exponent greater than χ almost everywhere.
Mots-clés : Interval map, Markov partition, Pesin theory, Symbolic dynamics
@article{AIHPC_2020__37_3_727_0, author = {Lima, Yuri}, title = {Symbolic dynamics for one dimensional maps with nonuniform expansion}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {727--755}, publisher = {Elsevier}, volume = {37}, number = {3}, year = {2020}, doi = {10.1016/j.anihpc.2019.10.001}, mrnumber = {4093615}, zbl = {1455.37012}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.10.001/} }
TY - JOUR AU - Lima, Yuri TI - Symbolic dynamics for one dimensional maps with nonuniform expansion JO - Annales de l'I.H.P. Analyse non linéaire PY - 2020 SP - 727 EP - 755 VL - 37 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2019.10.001/ DO - 10.1016/j.anihpc.2019.10.001 LA - en ID - AIHPC_2020__37_3_727_0 ER -
%0 Journal Article %A Lima, Yuri %T Symbolic dynamics for one dimensional maps with nonuniform expansion %J Annales de l'I.H.P. Analyse non linéaire %D 2020 %P 727-755 %V 37 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2019.10.001/ %R 10.1016/j.anihpc.2019.10.001 %G en %F AIHPC_2020__37_3_727_0
Lima, Yuri. Symbolic dynamics for one dimensional maps with nonuniform expansion. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 3, pp. 727-755. doi : 10.1016/j.anihpc.2019.10.001. http://www.numdam.org/articles/10.1016/j.anihpc.2019.10.001/
[1] An Introduction to Infinite Ergodic Theory, Mathematical Surveys and Monographs, vol. 50, American Mathematical Society, Providence, RI, 1997 | DOI | MR | Zbl
[2] Entropy, a complete metric invariant for automorphisms of the torus, Proc. Natl. Acad. Sci. USA, Volume 57 (1967), pp. 1573–1576 | DOI | MR | Zbl
[3] Similarity of Automorphisms of the Torus, Memoirs of the American Mathematical Society, vol. 98, American Mathematical Society, Providence, R.I., 1970 | MR | Zbl
[4] On iterations of on , Ann. Math. (2), Volume 122 (1985) no. 1, pp. 1–25 | MR | Zbl
[5] The dynamics of the Hénon map, Ann. Math. (2), Volume 133 (1991) no. 1, pp. 73–169 | MR | Zbl
[6] Equilibrium states for -unimodal maps, Ergod. Theory Dyn. Syst., Volume 18 (1998) no. 4, pp. 765–789 | MR | Zbl
[7] Symbolic dynamics for non-uniformly hyperbolic diffeomorphisms of compact smooth manifolds, J. Mod. Dyn., Volume 13 (2018), pp. 43–113 | MR | Zbl
[8] Markov partitions for Axiom diffeomorphisms, Am. J. Math., Volume 92 (1970), pp. 725–747 | MR | Zbl
[9] Symbolic dynamics for hyperbolic flows, Am. J. Math., Volume 95 (1973), pp. 429–460 | MR | Zbl
[10] Equilibrium States and the Ergodic Theory of Anosov Diffeomorphisms, Lecture Notes in Mathematics, vol. 470, Springer-Verlag, Berlin, 1975 | DOI | MR | Zbl
[11] Bernoulli maps of the interval, Isr. J. Math., Volume 28 (1977) no. 1–2, pp. 161–168 | MR | Zbl
[12] Induced maps, Markov extensions and invariant measures in one-dimensional dynamics, Commun. Math. Phys., Volume 168 (1995) no. 3, pp. 571–580 | DOI | MR | Zbl
[13] Uniqueness of equilibrium measures for countable Markov shifts and multidimensional piecewise expanding maps, Ergod. Theory Dyn. Syst., Volume 23 (2003) no. 5, pp. 1383–1400 | MR | Zbl
[14] Markov partitions for two-dimensional hyperbolic billiards, Usp. Mat. Nauk, Volume 45 (1990) no. 3(273), pp. 97–134 (221) | MR | Zbl
[15] Equilibrium states for interval maps: potentials with , Commun. Math. Phys., Volume 283 (2008) no. 3, pp. 579–611 | MR | Zbl
[16] Equilibrium states for interval maps: the potential , Ann. Sci. Éc. Norm. Supér. (4), Volume 42 (2009) no. 4, pp. 559–600 | Numdam | MR | Zbl
[17] Bowen Factors, Their Degree, and Codings of Surface Diffeomorphisms, 2019 (arXiv preprint) | arXiv
[18] Intrinsic ergodicity of affine maps in , Monatshefte Math., Volume 124 (1997) no. 2, pp. 97–118 | MR | Zbl
[19] Intrinsic ergodicity of smooth interval maps, Isr. J. Math., Volume 100 (1997), pp. 125–161 | MR | Zbl
[20] Ergodicité intrinsèque de produits fibrés d'applications chaotiques unidimensionelles, Bull. Soc. Math. Fr., Volume 126 (1998) no. 1, pp. 51–77 | Numdam | MR | Zbl
[21] Markov extensions for multi-dimensional dynamical systems, Isr. J. Math., Volume 112 (1999), pp. 357–380 | MR | Zbl
[22] On the uniqueness of equilibrium states for piecewise monotone mappings, Stud. Math., Volume 97 (1990) no. 1, pp. 27–36 | MR | Zbl
[23] Pesin theory and equilibrium measures on the interval, Fundam. Math., Volume 231 (2015) no. 1, pp. 1–17 | MR | Zbl
[24] Repellers for non-uniformly expanding maps with singular or critical points, Bull. Braz. Math. Soc., Volume 41 (2010) no. 2, pp. 237–257 | MR | Zbl
[25] Generic hyperbolicity in the logistic family, Ann. Math. (2), Volume 146 (1997) no. 1, pp. 1–52 | MR | Zbl
[26] Topological entropy of a countable Markov chain, Dokl. Akad. Nauk SSSR, Volume 187 (1969), pp. 715–718 | MR | Zbl
[27] Shift entropy and Markov measures in the space of paths of a countable graph, Dokl. Akad. Nauk SSSR, Volume 192 (1970), pp. 963–965 | MR
[28] Equilibrium states for piecewise monotonic transformations, Ergod. Theory Dyn. Syst., Volume 2 (1982) no. 1, pp. 23–43 | MR | Zbl
[29] β-shifts have unique maximal measure, Monatshefte Math., Volume 85 (1978) no. 3, pp. 189–198 | MR | Zbl
[30] On intrinsic ergodicity of piecewise monotonic transformations with positive entropy, Isr. J. Math., Volume 34 (1979) no. 3, pp. 213–237 (1980) | MR | Zbl
[31] On intrinsic ergodicity of piecewise monotonic transformations with positive entropy. II., Isr. J. Math., Volume 38 (1981) no. 1–2, pp. 107–115 | MR | Zbl
[32] Natural equilibrium states for multimodal maps, Commun. Math. Phys., Volume 300 (2010) no. 1, pp. 65–94 | MR | Zbl
[33] Absolutely continuous invariant measures for one-parameter families of one-dimensional maps, Commun. Math. Phys., Volume 81 (1981) no. 1, pp. 39–88 | DOI | MR | Zbl
[34] Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publ. Math. IHES (1980) no. 51, pp. 137–173 | Numdam | MR | Zbl
[35] Invariant Manifolds, Entropy and Billiards; Smooth Maps with Singularities, Lecture Notes in Mathematics, vol. 1222, Springer-Verlag, Berlin, 1986 | DOI | MR | Zbl
[36] Symbolic dynamics for the modular surface and beyond, Bull. Am. Math. Soc., Volume 44 (2007) no. 1, pp. 87–132 | MR | Zbl
[37] Some properties of absolutely continuous invariant measures on an interval, Ergod. Theory Dyn. Syst., Volume 1 (1981) no. 1, pp. 77–93 | MR | Zbl
[38] Symbolic dynamics for non-uniformly hyperbolic surface maps with discontinuities, Ann. Sci. Éc. Norm. Supér. (4), Volume 51 (2018) no. 1, pp. 1–38 | MR | Zbl
[39] Symbolic dynamics for three-dimensional flows with positive topological entropy, J. Eur. Math. Soc., Volume 21 (2019) no. 1, pp. 199–256 | MR | Zbl
[40] On the existence of invariant measures for piecewise monotonic transformations, Trans. Am. Math. Soc., Volume 186 (1973), pp. 481–488 (1974) | DOI | MR | Zbl
[41] Dynamics of quadratic polynomials. I, II, Acta Math., Volume 178 (1997) no. 2, pp. 185–247 (247–297) | MR | Zbl
[42] Hyperbolicity, sinks and measure in one-dimensional dynamics, Commun. Math. Phys., Volume 100 (1985) no. 4, pp. 495–524 | MR | Zbl
[43] Expanding measures, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 28 (2011) no. 6, pp. 889–939 | Numdam | MR | Zbl
[44] Lyapunov characteristic exponents are nonnegative, Proc. Am. Math. Soc., Volume 119 (1993) no. 1, pp. 309–317 | MR | Zbl
[45] Thermodynamical formalism associated with inducing schemes for one-dimensional maps, Mosc. Math. J., Volume 5 (2005) no. 3, pp. 669–678 (743–744) | MR | Zbl
[46] Lifting measures to inducing schemes, Ergod. Theory Dyn. Syst., Volume 28 (2008) no. 2, pp. 553–574 | MR | Zbl
[47] Markov decomposition for an U-flow on a three-dimensional manifold, Mat. Zametki, Volume 6 (1969), pp. 693–704 | MR | Zbl
[48] Markov partitions for Anosov flows on -dimensional manifolds, Isr. J. Math., Volume 15 (1973), pp. 92–114 | DOI | MR | Zbl
[49] Asymptotic Expansion of Smooth Interval Maps, 2012 (26 pages, arXiv preprint) | arXiv | MR
[50] Exact endomorphisms of a Lebesgue space, Izv. Akad. Nauk SSSR, Ser. Mat., Volume 25 (1961), pp. 499–530 | MR | Zbl
[51] Mixing maps of the interval without maximal measure, Isr. J. Math., Volume 127 (2002), pp. 253–277 | MR | Zbl
[52] Bernoulli equilibrium states for surface diffeomorphisms, J. Mod. Dyn., Volume 5 (2011) no. 3, pp. 593–608 | MR | Zbl
[53] Symbolic dynamics for surface diffeomorphisms with positive entropy, J. Am. Math. Soc., Volume 26 (2013) no. 2, pp. 341–426 | MR | Zbl
[54] Construction of Markov partitionings, Funkc. Anal. Prilozh., Volume 2 (1968) no. 3, pp. 70–80 (Loose errata) | MR | Zbl
[55] Markov partitions and U-diffeomorphisms, Funkc. Anal. Prilozh., Volume 2 (1968) no. 1, pp. 64–89 | MR | Zbl
[56] β-automorphisms are Bernoulli shifts, Acta Math. Acad. Sci. Hung., Volume 24 (1973), pp. 273–278 | DOI | MR | Zbl
[57] Isomorphisms of β-automorphisms to Markov automorphisms, Osaka J. Math., Volume 10 (1973), pp. 175–184 | MR | Zbl
[58] A proof of Jakobson's theorem https://www.college-de-france.fr/media/jean-christophe-yoccoz/UPL7416254474776698194_Jakobson_jcy.pdf (34 pages, available at)
[59] Statistical properties of dynamical systems with some hyperbolicity, Ann. Math. (2), Volume 147 (1998) no. 3, pp. 585–650 | MR | Zbl
Cité par Sources :