For open bounded and with a Lipschitz boundary, and , we consider the Poincaré inequality with trace term
Mots-clés : Free discontinuity problems, Functions of bounded variation, Sets of finite perimeter, Robin boundary conditions
@article{AIHPC_2019__36_7_1959_0, author = {Bucur, Dorin and Giacomini, Alessandro and Trebeschi, Paola}, title = {Best constant in {Poincar\'e} inequalities with traces: {A} free discontinuity approach}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1959--1986}, publisher = {Elsevier}, volume = {36}, number = {7}, year = {2019}, doi = {10.1016/j.anihpc.2019.07.007}, mrnumber = {4020530}, zbl = {1428.49043}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.007/} }
TY - JOUR AU - Bucur, Dorin AU - Giacomini, Alessandro AU - Trebeschi, Paola TI - Best constant in Poincaré inequalities with traces: A free discontinuity approach JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 1959 EP - 1986 VL - 36 IS - 7 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.007/ DO - 10.1016/j.anihpc.2019.07.007 LA - en ID - AIHPC_2019__36_7_1959_0 ER -
%0 Journal Article %A Bucur, Dorin %A Giacomini, Alessandro %A Trebeschi, Paola %T Best constant in Poincaré inequalities with traces: A free discontinuity approach %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 1959-1986 %V 36 %N 7 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.007/ %R 10.1016/j.anihpc.2019.07.007 %G en %F AIHPC_2019__36_7_1959_0
Bucur, Dorin; Giacomini, Alessandro; Trebeschi, Paola. Best constant in Poincaré inequalities with traces: A free discontinuity approach. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 1959-1986. doi : 10.1016/j.anihpc.2019.07.007. http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.007/
[1] Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000 | DOI | MR | Zbl
[2] Membranes élastiquement liées inhomogènes ou sur une surface: une nouvelle extension du théorème isopérimétrique de Rayleigh-Faber-Krahn, Z. Angew. Math. Phys., Volume 39 (1988) no. 5, pp. 733–742 | MR | Zbl
[3] Symmetry breaking for a problem in optimal insulation, J. Math. Pures Appl. (9), Volume 107 (2017) no. 4, pp. 451–463 | DOI | MR
[4] An alternative approach to the Faber-Krahn inequality for Robin problems, Calc. Var. Partial Differ. Equ., Volume 37 (2010) no. 1–2, pp. 75–86 | MR | Zbl
[5] A variational approach to the isoperimetric inequality for the Robin eigenvalue problem, Arch. Ration. Mech. Anal., Volume 198 (2010) no. 3, pp. 927–961 | DOI | MR | Zbl
[6] Faber-Krahn inequalities for the Robin-Laplacian: a free discontinuity approach, Arch. Ration. Mech. Anal., Volume 218 (2015) no. 2, pp. 757–824 | DOI | MR | Zbl
[7] Shape optimization problems with Robin conditions on the free boundary, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2016) no. 6, pp. 1539–1568 | DOI | Numdam | MR | Zbl
[8] Geometric Inequalities, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988 (Translated from the Russian by A.B. Sosinskiĭ, Springer Series in Soviet Mathematics) | DOI | MR | Zbl
[9] A free boundary problem related to thermal insulation, Commun. Partial Differ. Equ., Volume 41 (2016) no. 7, pp. 1149–1182 | DOI | MR | Zbl
[10] On a weighted total variation minimization problem, J. Funct. Anal., Volume 250 (2007) no. 1, pp. 214–226 | MR | Zbl
[11] Functions of bounded variation and rearrangements, Arch. Ration. Mech. Anal., Volume 165 (2002) no. 1, pp. 1–40 | DOI | MR | Zbl
[12] Faber-Krahn inequality for Robin problems involving -Laplacian, Acta Math. Appl. Sin. Engl. Ser., Volume 27 (2011) no. 1, pp. 13–28 | MR | Zbl
[13] A Faber-Krahn inequality for Robin problems in any space dimension, Math. Ann., Volume 335 (2006) no. 4, pp. 767–785 | DOI | MR | Zbl
[14] Existence theorem for a minimum problem with free discontinuity set, Arch. Ration. Mech. Anal., Volume 108 (1989) no. 3, pp. 195–218 | MR | Zbl
[15] local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., Volume 7 (1983) no. 8, pp. 827–850 | DOI | MR | Zbl
[16] Balls have the worst best Sobolev inequalities. II. Variants and extensions, Calc. Var. Partial Differ. Equ., Volume 31 (2008) no. 1, pp. 47–74 | DOI | MR | Zbl
[17] Balls have the worst best Sobolev inequalities, J. Geom. Anal., Volume 15 (2005) no. 1, pp. 83–121 | MR | Zbl
[18] Steiner and Schwarz symmetrization in warped products and fiber bundles with density, Rev. Mat. Iberoam., Volume 27 (2011) no. 3, pp. 909–918 | DOI | MR | Zbl
[19] Existence of isoperimetric regions in with density, Ann. Glob. Anal. Geom., Volume 43 (2013) no. 4, pp. 331–365 | DOI | MR | Zbl
[20] Ahlfors-régularité des quasi-minima de Mumford-Shah, J. Math. Pures Appl. (9), Volume 82 (2003) no. 12, pp. 1697–1731 | DOI | MR | Zbl
[21] Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), Volume 110 (1976), pp. 353–372 | DOI | MR | Zbl
[22] Sturm-Liouville theory for the radial -operator, Math. Z., Volume 227 (1998) no. 1, pp. 175–185 | DOI | MR | Zbl
Cité par Sources :