Best constant in Poincaré inequalities with traces: A free discontinuity approach
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 1959-1986.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

For ΩRN open bounded and with a Lipschitz boundary, and 1p<+, we consider the Poincaré inequality with trace term

Cp(Ω)uLp(Ω)uLp(Ω;RN)+uLp(Ω)
on the Sobolev space W1,p(Ω). We show that among all domains Ω with prescribed volume, the constant is minimal on balls. The proof is based on the analysis of a free discontinuity problem.

DOI : 10.1016/j.anihpc.2019.07.007
Classification : 49Q10, 26A45, 35R35, 35J65, 35J91, 49K20
Mots-clés : Free discontinuity problems, Functions of bounded variation, Sets of finite perimeter, Robin boundary conditions
Bucur, Dorin 1 ; Giacomini, Alessandro 2 ; Trebeschi, Paola 2

1 Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, LAMA 73000 Chambéry, France
2 DICATAM, Sezione di Matematica, Università degli Studi di Brescia, Via Branze 43, 25123 Brescia, Italy
@article{AIHPC_2019__36_7_1959_0,
     author = {Bucur, Dorin and Giacomini, Alessandro and Trebeschi, Paola},
     title = {Best constant in {Poincar\'e} inequalities with traces: {A} free discontinuity approach},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1959--1986},
     publisher = {Elsevier},
     volume = {36},
     number = {7},
     year = {2019},
     doi = {10.1016/j.anihpc.2019.07.007},
     mrnumber = {4020530},
     zbl = {1428.49043},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.007/}
}
TY  - JOUR
AU  - Bucur, Dorin
AU  - Giacomini, Alessandro
AU  - Trebeschi, Paola
TI  - Best constant in Poincaré inequalities with traces: A free discontinuity approach
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1959
EP  - 1986
VL  - 36
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.007/
DO  - 10.1016/j.anihpc.2019.07.007
LA  - en
ID  - AIHPC_2019__36_7_1959_0
ER  - 
%0 Journal Article
%A Bucur, Dorin
%A Giacomini, Alessandro
%A Trebeschi, Paola
%T Best constant in Poincaré inequalities with traces: A free discontinuity approach
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1959-1986
%V 36
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.007/
%R 10.1016/j.anihpc.2019.07.007
%G en
%F AIHPC_2019__36_7_1959_0
Bucur, Dorin; Giacomini, Alessandro; Trebeschi, Paola. Best constant in Poincaré inequalities with traces: A free discontinuity approach. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 1959-1986. doi : 10.1016/j.anihpc.2019.07.007. http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.007/

[1] Ambrosio, L.; Fusco, N.; Pallara, D. Functions of Bounded Variation and Free Discontinuity Problems, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 2000 | DOI | MR | Zbl

[2] Bossel, M.-H. Membranes élastiquement liées inhomogènes ou sur une surface: une nouvelle extension du théorème isopérimétrique de Rayleigh-Faber-Krahn, Z. Angew. Math. Phys., Volume 39 (1988) no. 5, pp. 733–742 | MR | Zbl

[3] Bucur, D.; Buttazzo, G.; Nitsch, C. Symmetry breaking for a problem in optimal insulation, J. Math. Pures Appl. (9), Volume 107 (2017) no. 4, pp. 451–463 | DOI | MR

[4] Bucur, D.; Daners, D. An alternative approach to the Faber-Krahn inequality for Robin problems, Calc. Var. Partial Differ. Equ., Volume 37 (2010) no. 1–2, pp. 75–86 | MR | Zbl

[5] Bucur, D.; Giacomini, A. A variational approach to the isoperimetric inequality for the Robin eigenvalue problem, Arch. Ration. Mech. Anal., Volume 198 (2010) no. 3, pp. 927–961 | DOI | MR | Zbl

[6] Bucur, D.; Giacomini, A. Faber-Krahn inequalities for the Robin-Laplacian: a free discontinuity approach, Arch. Ration. Mech. Anal., Volume 218 (2015) no. 2, pp. 757–824 | DOI | MR | Zbl

[7] Bucur, D.; Giacomini, A. Shape optimization problems with Robin conditions on the free boundary, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 33 (2016) no. 6, pp. 1539–1568 | DOI | Numdam | MR | Zbl

[8] Burago, Yu.D.; Zalgaller, V.A. Geometric Inequalities, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 285, Springer-Verlag, Berlin, 1988 (Translated from the Russian by A.B. Sosinskiĭ, Springer Series in Soviet Mathematics) | DOI | MR | Zbl

[9] Caffarelli, L.A.; Kriventsov, D. A free boundary problem related to thermal insulation, Commun. Partial Differ. Equ., Volume 41 (2016) no. 7, pp. 1149–1182 | DOI | MR | Zbl

[10] Carlier, Guillaume; Comte, Myriam On a weighted total variation minimization problem, J. Funct. Anal., Volume 250 (2007) no. 1, pp. 214–226 | MR | Zbl

[11] Cianchi, A.; Fusco, N. Functions of bounded variation and rearrangements, Arch. Ration. Mech. Anal., Volume 165 (2002) no. 1, pp. 1–40 | DOI | MR | Zbl

[12] Dai, Q.; Fu, Y. Faber-Krahn inequality for Robin problems involving p -Laplacian, Acta Math. Appl. Sin. Engl. Ser., Volume 27 (2011) no. 1, pp. 13–28 | MR | Zbl

[13] Daners, D. A Faber-Krahn inequality for Robin problems in any space dimension, Math. Ann., Volume 335 (2006) no. 4, pp. 767–785 | DOI | MR | Zbl

[14] De Giorgi, E.; Carriero, M.; Leaci, A. Existence theorem for a minimum problem with free discontinuity set, Arch. Ration. Mech. Anal., Volume 108 (1989) no. 3, pp. 195–218 | MR | Zbl

[15] DiBenedetto, E. C1+α local regularity of weak solutions of degenerate elliptic equations, Nonlinear Anal., Volume 7 (1983) no. 8, pp. 827–850 | DOI | MR | Zbl

[16] Maggi, F.; Villani, C. Balls have the worst best Sobolev inequalities. II. Variants and extensions, Calc. Var. Partial Differ. Equ., Volume 31 (2008) no. 1, pp. 47–74 | DOI | MR | Zbl

[17] Maggi, Francesco; Villani, Cédric Balls have the worst best Sobolev inequalities, J. Geom. Anal., Volume 15 (2005) no. 1, pp. 83–121 | MR | Zbl

[18] Morgan, F.; Howe, S.; Harman, N. Steiner and Schwarz symmetrization in warped products and fiber bundles with density, Rev. Mat. Iberoam., Volume 27 (2011) no. 3, pp. 909–918 | DOI | MR | Zbl

[19] Morgan, F.; Pratelli, A. Existence of isoperimetric regions in Rn with density, Ann. Glob. Anal. Geom., Volume 43 (2013) no. 4, pp. 331–365 | DOI | MR | Zbl

[20] Siaudeau, A. Ahlfors-régularité des quasi-minima de Mumford-Shah, J. Math. Pures Appl. (9), Volume 82 (2003) no. 12, pp. 1697–1731 | DOI | MR | Zbl

[21] Talenti, G. Best constant in Sobolev inequality, Ann. Mat. Pura Appl. (4), Volume 110 (1976), pp. 353–372 | DOI | MR | Zbl

[22] Walter, W. Sturm-Liouville theory for the radial Δp-operator, Math. Z., Volume 227 (1998) no. 1, pp. 175–185 | DOI | MR | Zbl

Cité par Sources :