Under certain regularity conditions, we establish quasi-invariance of Gaussian measures on periodic functions under the flow of cubic fractional nonlinear Schrödinger equations on the one-dimensional torus.
Mots-clés : Fractional nonlinear Schrödinger equation, Quasi-invariance, Gaussian measure
@article{AIHPC_2019__36_7_1987_0, author = {Forlano, Justin and Trenberth, William J.}, title = {On the transport of {Gaussian} measures under the one-dimensional fractional nonlinear {Schr\"odinger} equations}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1987--2025}, publisher = {Elsevier}, volume = {36}, number = {7}, year = {2019}, doi = {10.1016/j.anihpc.2019.07.006}, mrnumber = {4020531}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.006/} }
TY - JOUR AU - Forlano, Justin AU - Trenberth, William J. TI - On the transport of Gaussian measures under the one-dimensional fractional nonlinear Schrödinger equations JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 1987 EP - 2025 VL - 36 IS - 7 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.006/ DO - 10.1016/j.anihpc.2019.07.006 LA - en ID - AIHPC_2019__36_7_1987_0 ER -
%0 Journal Article %A Forlano, Justin %A Trenberth, William J. %T On the transport of Gaussian measures under the one-dimensional fractional nonlinear Schrödinger equations %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 1987-2025 %V 36 %N 7 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.006/ %R 10.1016/j.anihpc.2019.07.006 %G en %F AIHPC_2019__36_7_1987_0
Forlano, Justin; Trenberth, William J. On the transport of Gaussian measures under the one-dimensional fractional nonlinear Schrödinger equations. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 1987-2025. doi : 10.1016/j.anihpc.2019.07.006. http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.006/
[1] Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I: Schrödinger equations, Geom. Funct. Anal., Volume 3 (1993), pp. 107–115 | MR | Zbl
[2] Gibbs measures and quasi-periodic solutions for nonlinear Hamiltonian partial differential equations, The Gelfand Mathematical Seminars, 1993–1995, Gelfand Math. Sem., Birkhäuser Boston, Boston, MA, 1996, pp. 23–43 | MR | Zbl
[3] Periodic nonlinear Schrödinger equation and invariant measures, Commun. Math. Phys., Volume 166 (1994) no. 1, pp. 1–26 | DOI | MR | Zbl
[4] Refinements of Strichartz' inequality and applications to 2D-NLS with critical nonlinearity, Int. Math. Res. Not. (1998) no. 5, pp. 253–283 | DOI | MR | Zbl
[5] An instability property of the nonlinear Schrödinger equation on , Math. Res. Lett., Volume 9 (2002), pp. 323–335 | DOI | MR | Zbl
[6] Dispersive wave turbulence in one dimension, Physica D, Volume 152/153 (2001), pp. 551–572 | MR | Zbl
[7] Transformations of Wiener integrals under translations, Ann. Math. (2), Volume 45 (1944), pp. 386–396 | DOI | MR | Zbl
[8] Well-posedness and ill-posedness for the cubic fractional Schrödinger equations, Discrete Contin. Dyn. Syst., Volume 35 (2015), pp. 2863–2880 | MR
[9] Ill-posedness of the cubic nonlinear half-wave equation and other fractional NLS on the real line, Int. Math. Res. Not. (2018) no. 3, pp. 699–738 | MR
[10] A refined global well-posedness result for Schrödinger equations with derivative, SIAM J. Math. Anal., Volume 34 (2002) no. 1, pp. 64–86 | DOI | MR | Zbl
[11] Existence and Uniqueness theory for the fractional Schrödinger equation on the torus, Some Topics in Harmonic Analysis and Applications, Advanced Lectures in Mathematics (ALM), vol. 34, Int. Press, Somerville, MA, 2016, pp. 1241–1252 | MR
[12] Mean field dynamics of boson stars, Commun. Pure Appl. Math., Volume 60 (2007) no. 4, pp. 500–545 | DOI | MR | Zbl
[13] Smoothing for the fractional Schrödinger equation on the torus and the real line, Indiana Univ. Math. J., Volume 68 (2019), pp. 369–392 | DOI | MR
[14] Blowup for nonlinear wave equations describing boson stars, Commun. Pure Appl. Math., Volume 60 (2007) no. 11, pp. 1691–1705 | DOI | MR | Zbl
[15] An introduction to the cubic Szegö equation, Lectures on the Analysis of Nonlinear Partial Differential Equations. Part 3, Morningside Lect. Math., vol. 3, Int. Press, Somerville, MA, 2013, pp. 177–208 | MR
[16] A two-soliton with transient turbulent regime for the cubic half-wave equation on the real line, Ann. PDE, Volume 4 (2018) no. 1 (Art. 7, 166 pp) | DOI | MR
[17] Effective integrable dynamics for a certain nonlinear wave equation, Anal. PDE, Volume 5 (2012) no. 5, pp. 1139–1155 | DOI | MR | Zbl
[18] On the Cauchy problem for the Zakharov system, J. Funct. Anal., Volume 151 (1997), pp. 384–436 | DOI | MR | Zbl
[19] Quasi-invariant Gaussian measures for the nonlinear wave equation in three dimensions | arXiv
[20] Non-existence of solutions for the periodic cubic nonlinear Schrödinger equation below , Int. Math. Res. Not. (2018) no. 6, pp. 1656–1729 | MR
[21] An Introduction to the Theory of Numbers, The Clarendon Press, Oxford University Press, New York, 1979 (xvi+426 pp) | MR | Zbl
[22] Stable three-dimensional small-amplitude soliton in magnetic materials, Sov. J. Low Temp. Phys., Volume 9 (1983), pp. 439–442
[23] On the continuum limit for discrete NLS with long-range interactions, Commun. Math. Phys., Volume 317 (2013), pp. 563–591 | DOI | MR | Zbl
[24] A remark on norm inflation for nonlinear Schrödinger equations, Commun. Pure Appl. Anal., Volume 18 (2019), pp. 1375–1402 | MR
[25] Nondispersive solutions to the -critical half-wave equation, Arch. Ration. Mech. Anal., Volume 209 (2013) no. 1, pp. 61–129 | DOI | MR | Zbl
[26] A one-dimensional model for dispersive wave turbulence, J. Nonlinear Sci., Volume 7 (1997) no. 1, pp. 9–44 | DOI | MR | Zbl
[27] On ill-posedness for the one-dimensional periodic cubic Schrödinger equation, Math. Res. Lett., Volume 16 (2009) no. 1, pp. 111–120 | DOI | MR | Zbl
[28] Absolute continuity of Brownian bridges under certain gauge transformations, Math. Res. Lett., Volume 18 (2011) no. 5, pp. 875–887 | DOI | MR | Zbl
[29] Springer Lecture Notes in Math., vol. 1450 (1990), pp. 236–251 | MR | Zbl
[30] A remark on norm inflation with general initial data for the cubic nonlinear Schrödinger equations in negative Sobolev spaces, Funkc. Ekvacioj, Volume 60 (2017), pp. 259–277 | MR
[31] An optimal regularity results on the quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation, J. Éc. Polytech. Math., Volume 5 (2018), pp. 793–841 | MR
[32] Quasi-invariant Gaussian measures for the cubic nonlinear Schrödinger equation with third order dispersion, C. R. Math. Acad. Sci. Paris, Volume 357 (2019) no. 4, pp. 366–381 | MR
[33] Quasi-invariant Gaussian measures for the cubic fourth order nonlinear Schrödinger equation, Probab. Theory Relat. Fields, Volume 169 (2017) no. 3–4, pp. 1121–1168 | MR
[34] On the transport of Gaussian measures under the flow of Hamiltonian PDEs, Séminaire Laurent Schwartz-Équations aux dérivées partielles et applications. Année 2015–2016, Exp. No. VI, Ed. Éc. Polytech., Palaiseau, 2017 (9 pp) | MR
[35] Quasi-invariant Gaussian measures for the two-dimensional defocusing cubic nonlinear wave equation, J. Eur. Math. Soc. (2019) (in press) | MR
[36] Solving the 4NLS with white noise initial data | arXiv
[37] On the ill-posedness of the cubic nonlinear Schrödinger equation on the circle, An. Ştiinţ. Univ. ‘Al.I. Cuza’ Iaşi, Mat., Volume 64 (2018) no. 1, pp. 53–84 | MR
[38] Transport of Gaussian measures by the flow of the nonlinear Schrödinger equation | arXiv
[39] On nonlinear transformations of Gaussian measures, J. Funct. Anal., Volume 15 (1974), pp. 166–187 | DOI | MR | Zbl
[40] The Nonlinear Schrödinger Equations: Self-focusing and Wave Collapse, Applied Mathematical Sciences, vol. 139, Springer-Verlag, New York, 1999 (350 pp) | MR | Zbl
[41] On the growth of Sobolev norms of solutions of the fractional defocusing NLS equation on the circle, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 34 (2017) no. 2, pp. 509–531 | DOI | Numdam | MR
[42] Three-dimensional dispersion of nonlinearity and stability of multidimensional solitons, Teor. Mat. Fiz., Volume 64 (1985), pp. 226–232 (in Russian) | MR
[43] Quasi-invariant Gaussian measures for one-dimension Hamiltonian partial differential equations, Forum Math. Sigma, Volume 3 (2015) no. e28, pp. 35 | MR
[44] On an infinite sequence of invariant measures for the cubic nonlinear Schrödinger equation, Int. J. Math. Math. Sci., Volume 28 (2001) no. 7, pp. 375–394 | DOI | MR | Zbl
Cité par Sources :