We study the rate of convergence to equilibrium of the solution of a Fokker–Planck type equation introduced in [19] to describe opinion formation in a multi-agent system. The main feature of this Fokker–Planck equation is the presence of a variable diffusion coefficient and boundaries, which introduce new challenging mathematical problems in the study of its long-time behavior.
@article{AIHPC_2019__36_7_2065_0, author = {Furioli, Giulia and Pulvirenti, Ada and Terraneo, Elide and Toscani, Giuseppe}, title = {Wright{\textendash}Fisher{\textendash}type equations for opinion formation, large time behavior and weighted {logarithmic-Sobolev} inequalities}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {2065--2082}, publisher = {Elsevier}, volume = {36}, number = {7}, year = {2019}, doi = {10.1016/j.anihpc.2019.07.005}, mrnumber = {4020534}, zbl = {1434.35238}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.005/} }
TY - JOUR AU - Furioli, Giulia AU - Pulvirenti, Ada AU - Terraneo, Elide AU - Toscani, Giuseppe TI - Wright–Fisher–type equations for opinion formation, large time behavior and weighted logarithmic-Sobolev inequalities JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 2065 EP - 2082 VL - 36 IS - 7 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.005/ DO - 10.1016/j.anihpc.2019.07.005 LA - en ID - AIHPC_2019__36_7_2065_0 ER -
%0 Journal Article %A Furioli, Giulia %A Pulvirenti, Ada %A Terraneo, Elide %A Toscani, Giuseppe %T Wright–Fisher–type equations for opinion formation, large time behavior and weighted logarithmic-Sobolev inequalities %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 2065-2082 %V 36 %N 7 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.005/ %R 10.1016/j.anihpc.2019.07.005 %G en %F AIHPC_2019__36_7_2065_0
Furioli, Giulia; Pulvirenti, Ada; Terraneo, Elide; Toscani, Giuseppe. Wright–Fisher–type equations for opinion formation, large time behavior and weighted logarithmic-Sobolev inequalities. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 2065-2082. doi : 10.1016/j.anihpc.2019.07.005. http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.005/
[1] Entropies and equilibria of many-particle systems: an essay on recent research, Monatshefte Math., Volume 142 (2004) no. 1–2, pp. 35–43 | MR | Zbl
[2] On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Commun. Partial Differ. Equ., Volume 26 (2001) no. 1–2, pp. 43–100 | MR | Zbl
[3] Diffusions hypercontractives, Séminaire de Probabilités, XIX, 1983/84, Lecture Notes in Math., vol. 1123, Springer, Berlin, 1985, pp. 177–206 | Numdam | MR | Zbl
[4] Bifurcation and patterns in compromise processes, Physica D, Volume 183 (2003) no. 3–4, pp. 190–204 | MR | Zbl
[5] Randomness and Complexity, Unity and discord in opinion dynamics (Physica A), Volume 330 (2003) no. 1–2, pp. 99–106 (Eilat, 2003) | MR | Zbl
[6] The quasi-invariant limit for a kinetic model of sociological collective behavior, Kinet. Relat. Models, Volume 2 (2009) no. 3, pp. 433–449 | DOI | MR | Zbl
[7] Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten, Magy. Tud. Akad. Mat. Kut. Intéz. Közl., Volume 8 (1963), pp. 85–108 | MR | Zbl
[8] Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, Proc. R. Soc. A, Volume 465 (2009) no. 2112, pp. 3687–3708 | DOI | MR | Zbl
[9] Wright-Fisher diffusion in one dimension, SIAM J. Math. Anal., Volume 42 (2010) no. 2, pp. 568–608 | DOI | MR | Zbl
[10] Fokker-Planck equations in the modeling of socio-economic phenomena, Math. Models Methods Appl. Sci., Volume 27 (2017) no. 1, pp. 115–158 | DOI | MR | Zbl
[11] Logarithmic Sobolev inequalities, Am. J. Math., Volume 97 (1975) no. 4, pp. 1061–1083 | DOI | MR | Zbl
[12] On an inequality of Chernoff, Ann. Probab., Volume 13 (1985) no. 3, pp. 966–974 | MR | Zbl
[13] Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients, Commun. Partial Differ. Equ., Volume 33 (2008) no. 7–9, pp. 1272–1317 | MR | Zbl
[14] Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas, Arch. Ration. Mech. Anal., Volume 21 (1966), pp. 343–367 | MR | Zbl
[15] Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 2010 | MR | Zbl
[16] Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods, OUP Oxford, 2013 | Zbl
[17] Structure preserving schemes for nonlinear Fokker–Planck equations and applications, J. Sci. Comput., Volume 74 (Mar 2018) no. 3, pp. 1575–1600 | DOI | MR | Zbl
[18] Entropy production and the rate of convergence to equilibrium for the Fokker-Planck equation, Q. Appl. Math., Volume 57 (1999) no. 3, pp. 521–541 | DOI | MR | Zbl
[19] Kinetic models of opinion formation, Commun. Math. Sci., Volume 4 (2006) no. 3, pp. 481–496 | DOI | MR | Zbl
[20] An information-theoretic proof of Nash's inequality, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., Volume 24 (2013) no. 1, pp. 83–93 | MR | Zbl
Cité par Sources :