Wright–Fisher–type equations for opinion formation, large time behavior and weighted logarithmic-Sobolev inequalities
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 2065-2082.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We study the rate of convergence to equilibrium of the solution of a Fokker–Planck type equation introduced in [19] to describe opinion formation in a multi-agent system. The main feature of this Fokker–Planck equation is the presence of a variable diffusion coefficient and boundaries, which introduce new challenging mathematical problems in the study of its long-time behavior.

DOI : 10.1016/j.anihpc.2019.07.005
Mots-clés : Fokker-Planck type equations, Large time behavior, Weighted Logarithmic-Sobolev inequalities
Furioli, Giulia 1 ; Pulvirenti, Ada 2 ; Terraneo, Elide 3 ; Toscani, Giuseppe 2

1 DIGIP, University of Bergamo, viale Marconi 5, 24044 Dalmine, Italy
2 Department of Mathematics, University of Pavia, via Ferrata 1, Pavia, 27100 Italy
3 Department of Mathematics, University of Milan, via Saldini 50, 20133 Milano, Italy
@article{AIHPC_2019__36_7_2065_0,
     author = {Furioli, Giulia and Pulvirenti, Ada and Terraneo, Elide and Toscani, Giuseppe},
     title = {Wright{\textendash}Fisher{\textendash}type equations for opinion formation, large time behavior and weighted {logarithmic-Sobolev} inequalities},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {2065--2082},
     publisher = {Elsevier},
     volume = {36},
     number = {7},
     year = {2019},
     doi = {10.1016/j.anihpc.2019.07.005},
     mrnumber = {4020534},
     zbl = {1434.35238},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.005/}
}
TY  - JOUR
AU  - Furioli, Giulia
AU  - Pulvirenti, Ada
AU  - Terraneo, Elide
AU  - Toscani, Giuseppe
TI  - Wright–Fisher–type equations for opinion formation, large time behavior and weighted logarithmic-Sobolev inequalities
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 2065
EP  - 2082
VL  - 36
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.005/
DO  - 10.1016/j.anihpc.2019.07.005
LA  - en
ID  - AIHPC_2019__36_7_2065_0
ER  - 
%0 Journal Article
%A Furioli, Giulia
%A Pulvirenti, Ada
%A Terraneo, Elide
%A Toscani, Giuseppe
%T Wright–Fisher–type equations for opinion formation, large time behavior and weighted logarithmic-Sobolev inequalities
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 2065-2082
%V 36
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.005/
%R 10.1016/j.anihpc.2019.07.005
%G en
%F AIHPC_2019__36_7_2065_0
Furioli, Giulia; Pulvirenti, Ada; Terraneo, Elide; Toscani, Giuseppe. Wright–Fisher–type equations for opinion formation, large time behavior and weighted logarithmic-Sobolev inequalities. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 2065-2082. doi : 10.1016/j.anihpc.2019.07.005. http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.005/

[1] Arnold, A.; Carrillo, J.A.; Desvillettes, L.; Dolbeault, J.; Jüngel, A.; Lederman, C.; Markowich, P.A.; Toscani, G.; Villani, C. Entropies and equilibria of many-particle systems: an essay on recent research, Monatshefte Math., Volume 142 (2004) no. 1–2, pp. 35–43 | MR | Zbl

[2] Arnold, A.; Markowich, P.; Toscani, G.; Unterreiter, A. On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Commun. Partial Differ. Equ., Volume 26 (2001) no. 1–2, pp. 43–100 | MR | Zbl

[3] Bakry, D.; Émery, M. Diffusions hypercontractives, Séminaire de Probabilités, XIX, 1983/84, Lecture Notes in Math., vol. 1123, Springer, Berlin, 1985, pp. 177–206 | Numdam | MR | Zbl

[4] Ben-Naim, E.; Krapivsky, P.L.; Redner, S. Bifurcation and patterns in compromise processes, Physica D, Volume 183 (2003) no. 3–4, pp. 190–204 | MR | Zbl

[5] Ben-Naim, E.; Krapivsky, P.L.; Vazquez, F.; Redner, S. Randomness and Complexity, Unity and discord in opinion dynamics (Physica A), Volume 330 (2003) no. 1–2, pp. 99–106 (Eilat, 2003) | MR | Zbl

[6] Boudin, L.; Salvarani, F. The quasi-invariant limit for a kinetic model of sociological collective behavior, Kinet. Relat. Models, Volume 2 (2009) no. 3, pp. 433–449 | DOI | MR | Zbl

[7] Csiszár, I. Eine informationstheoretische Ungleichung und ihre Anwendung auf den Beweis der Ergodizität von Markoffschen Ketten, Magy. Tud. Akad. Mat. Kut. Intéz. Közl., Volume 8 (1963), pp. 85–108 | MR | Zbl

[8] Düring, B.; Markowich, P.; Pietschmann, J.-F.; Wolfram, M.-T. Boltzmann and Fokker-Planck equations modelling opinion formation in the presence of strong leaders, Proc. R. Soc. A, Volume 465 (2009) no. 2112, pp. 3687–3708 | DOI | MR | Zbl

[9] Epstein, C.L.; Mazzeo, R. Wright-Fisher diffusion in one dimension, SIAM J. Math. Anal., Volume 42 (2010) no. 2, pp. 568–608 | DOI | MR | Zbl

[10] Furioli, G.; Pulvirenti, A.; Terraneo, E.; Toscani, G. Fokker-Planck equations in the modeling of socio-economic phenomena, Math. Models Methods Appl. Sci., Volume 27 (2017) no. 1, pp. 115–158 | DOI | MR | Zbl

[11] Gross, L. Logarithmic Sobolev inequalities, Am. J. Math., Volume 97 (1975) no. 4, pp. 1061–1083 | DOI | MR | Zbl

[12] Klaassen, C.A.J. On an inequality of Chernoff, Ann. Probab., Volume 13 (1985) no. 3, pp. 966–974 | MR | Zbl

[13] Le Bris, C.; Lions, P.-L. Existence and uniqueness of solutions to Fokker-Planck type equations with irregular coefficients, Commun. Partial Differ. Equ., Volume 33 (2008) no. 7–9, pp. 1272–1317 | MR | Zbl

[14] McKean, H.P. Jr. Speed of approach to equilibrium for Kac's caricature of a Maxwellian gas, Arch. Ration. Mech. Anal., Volume 21 (1966), pp. 343–367 | MR | Zbl

[15] Naldi, G.; Pareschi, L.; Toscani, G. Mathematical Modeling of Collective Behavior in Socio-Economic and Life Sciences, Modeling and Simulation in Science, Engineering and Technology, Birkhäuser Boston, Inc., Boston, MA, 2010 | MR | Zbl

[16] Pareschi, L.; Toscani, G. Interacting Multiagent Systems: Kinetic Equations and Monte Carlo Methods, OUP Oxford, 2013 | Zbl

[17] Pareschi, L.; Zanella, M. Structure preserving schemes for nonlinear Fokker–Planck equations and applications, J. Sci. Comput., Volume 74 (Mar 2018) no. 3, pp. 1575–1600 | DOI | MR | Zbl

[18] Toscani, G. Entropy production and the rate of convergence to equilibrium for the Fokker-Planck equation, Q. Appl. Math., Volume 57 (1999) no. 3, pp. 521–541 | DOI | MR | Zbl

[19] Toscani, G. Kinetic models of opinion formation, Commun. Math. Sci., Volume 4 (2006) no. 3, pp. 481–496 | DOI | MR | Zbl

[20] Toscani, G. An information-theoretic proof of Nash's inequality, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., Volume 24 (2013) no. 1, pp. 83–93 | MR | Zbl

Cité par Sources :