Non-uniqueness for a critical heat equation in two dimensions with singular data
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 2027-2051.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Nonlinear heat equations in two dimensions with singular initial data are studied. In recent works nonlinearities with exponential growth of Trudinger-Moser type have been shown to manifest critical behavior: well-posedness in the subcritical case and non-existence for certain supercritical data. In this article we propose a specific model nonlinearity with Trudinger-Moser growth for which we obtain surprisingly complete results: a) for initial data strictly below a certain singular threshold function u˜ the problem is well-posed, b) for initial data above this threshold function u˜, there exists no solution, c) for the singular initial datum u˜ there is non-uniqueness. The function u˜ is a weak stationary singular solution of the problem, and we show that there exists also a regularizing classical solution with the same initial datum u˜.

DOI : 10.1016/j.anihpc.2019.07.004
Mots-clés : Nonlinear heat equation, Singular initial data, Non-uniqueness, Non-existence
Ioku, Norisuke 1 ; Ruf, Bernhard 2 ; Terraneo, Elide 2

1 Mathematical Institute, Tohoku University, Aramaki 6-3, Sendai 980-8578, Japan
2 Dipartimento di Matematica “F. Enriques”, Università degli Studi di Milano, via C. Saldini 50, Milano 20133, Italy
@article{AIHPC_2019__36_7_2027_0,
     author = {Ioku, Norisuke and Ruf, Bernhard and Terraneo, Elide},
     title = {Non-uniqueness for a critical heat equation in two dimensions with singular data},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {2027--2051},
     publisher = {Elsevier},
     volume = {36},
     number = {7},
     year = {2019},
     doi = {10.1016/j.anihpc.2019.07.004},
     mrnumber = {4020532},
     zbl = {1427.35096},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.004/}
}
TY  - JOUR
AU  - Ioku, Norisuke
AU  - Ruf, Bernhard
AU  - Terraneo, Elide
TI  - Non-uniqueness for a critical heat equation in two dimensions with singular data
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 2027
EP  - 2051
VL  - 36
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.004/
DO  - 10.1016/j.anihpc.2019.07.004
LA  - en
ID  - AIHPC_2019__36_7_2027_0
ER  - 
%0 Journal Article
%A Ioku, Norisuke
%A Ruf, Bernhard
%A Terraneo, Elide
%T Non-uniqueness for a critical heat equation in two dimensions with singular data
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 2027-2051
%V 36
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.004/
%R 10.1016/j.anihpc.2019.07.004
%G en
%F AIHPC_2019__36_7_2027_0
Ioku, Norisuke; Ruf, Bernhard; Terraneo, Elide. Non-uniqueness for a critical heat equation in two dimensions with singular data. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 2027-2051. doi : 10.1016/j.anihpc.2019.07.004. http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.004/

[1] Adams, R.A.; Fournier, J.J.F. Sobolev Spaces, Pure and Applied Mathematics, Academic Press, 2003 | MR | Zbl

[2] Bergh, J.; Löfström, J. Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, vol. 223, Springer-Verlag, Berlin-New York, 1976 | MR | Zbl

[3] van den Berg, M. Heat equation and the principle of not feeling the boundary, Proc. R. Soc. Edinb., Sect. A, Volume 112 (1989), pp. 257–262 | DOI | MR | Zbl

[4] Brezis, H.; Cazenave, T. A nonlinear heat equation with singular initial data, J. Anal. Math., Volume 68 (1996), pp. 186–212 | DOI | MR | Zbl

[5] Brezis, H.; Lions, P.L. Adv. in Math. Suppl. Stud., vol. 7A, Academic Press, New York and London (1981), pp. 263–266 | MR | Zbl

[6] Brezis, H.; Cazenave, T.; Martel, Y.; Ramiandrisoa, A. Blow up for utΔu=g(u) revisited, Adv. Differ. Equ., Volume 1 (1996), pp. 73–90 | MR | Zbl

[7] Cazenave, T. An Introduction to Semilinear Elliptic Equations, Editora do IM-UFRJ, Rio de Janeiro, 2006 (ix+193 pp.)

[8] Cazenave, T.; Weissler, F.B. The Cauchy problem for the critical nonlinear Schrödinger equation in Hs , Nonlinear Anal., Theory Methods Appl., Volume 14 (1990), pp. 807–836 | DOI | MR | Zbl

[9] Colliander, J.; Ibrahim, S.; Majdoub, M.; Masmoudi, N. Energy critical NLS in two space dimensions, J. Hyperbolic Differ. Equ., Volume 6 (2009), pp. 549–575 | DOI | MR | Zbl

[10] de Figueiredo, D.G.; Ruf, B. Existence and non-existence of radial solutions for elliptic equations with critical exponent in R2 , Commun. Pure Appl. Math., Volume 48 (1995), pp. 639–655 | DOI | MR | Zbl

[11] Fujishima, Y.; Ioku, N. Existence and nonexistence of solutions for the heat equation with a superlinear source term, J. Math. Pures Appl. (9), Volume 118 (2018), pp. 128–158 | DOI | MR | Zbl

[12] Fujita, H. On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations, Nonlinear Funct. Anal. (1970), pp. 105–113 | DOI | MR | Zbl

[13] Furioli, G.; Kawakami, T.; Ruf, B.; Terraneo, E. Asymptotic behavior and decay estimates of the solutions for a nonlinear parabolic equation with exponential nonlinearity, J. Differ. Equ., Volume 262 (2017), pp. 145–180 | DOI | MR | Zbl

[14] Galaktionov, V.A.; Vazquez, J.L. Continuation of blowup solutions of nonlinear heat equations in several space dimensions, Commun. Pure Appl. Math., Volume 50 (1997) no. 1, pp. 1–67 | DOI | MR | Zbl

[15] Ibrahim, S.; Jrad, R.; Majdoub, M.; Saanouni, T. Local well posedness of a 2D semilinear heat equation, Bull. Belg. Math. Soc. Simon Stevin, Volume 21 (2014) no. 3, pp. 535–551 | DOI | MR | Zbl

[16] Ioku, N. The Cauchy problem for heat equations with exponential nonlinearity, J. Differ. Equ., Volume 251 (2011), pp. 1172–1194 | DOI | MR | Zbl

[17] Ioku, N.; Ruf, B.; Terraneo, E. Existence, non-existence, and uniqueness for a heat equation with exponential nonlinearity in RN , Math. Phys. Anal. Geom., Volume 18 (2015) no. 18, pp. 29 | MR | Zbl

[18] Majdoub, M.; Tayachi, S. Global existence and decay estimates for the heat equation with general power-exponential nonlinearities, Proc. Int. Cong. Math., Volume 2 (2018), pp. 2379–2404 (Rio de Janeiro) | MR | Zbl

[19] McLeod, K.; Troy, W.C.; Weissler, F.B. Radial solutions of Δu+f(u)=0 with prescribed numbers of zeros, J. Differ. Equ., Volume 83 (1990), pp. 368–378 | DOI | MR | Zbl

[20] Moser, J. A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., Volume 20 (1971), pp. 1077–1092 | DOI | MR | Zbl

[21] Nakamura, M.; Ozawa, T. Nonlinear Schrödinger equations in the Sobolev space of critical order, J. Funct. Anal., Volume 155 (1998), pp. 364–380 | DOI | MR | Zbl

[22] Ni, W.-M.; Sacks, P. Singular behavior in nonlinear parabolic equations, Trans. Am. Math. Soc., Volume 287 (1985), pp. 657–671 | MR | Zbl

[23] Pohozaev, S.I. Proc. Tech. Sci. Conf. on Adv. Sci., Research 1964–1965, Mathematics Section, The Sobolev embedding in the case pl=n (1965), pp. 158–170 (Moskov. Ènerget. Inst., Moscow, 1965)

[24] Quittner, P.; Souplet, P. Superlinear Parabolic Problems, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2007 | MR | Zbl

[25] Ruf, B.; Terraneo, E. The Cauchy problem for a semilinear heat equation with singular initial data, Prog. Nonlinear Differ. Equ. Appl., Volume 50 (2002), pp. 295–309 | MR | Zbl

[26] Souplet, P.; Weissler, F.B. Regular self-similar solutions of the nonlinear heat equation with initial data above the singular steady state, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 20 (2003), pp. 213–235 | DOI | Numdam | MR | Zbl

[27] Terraneo, E. Non-uniqueness for a critical non-linear heat equation, Commun. Partial Differ. Equ., Volume 27 (2002), pp. 185–218 | DOI | MR | Zbl

[28] Trudinger, N.S. On imbeddings into Orlicz spaces and some applications, J. Math. Mech., Volume 17 (1967), pp. 473–483 | MR | Zbl

[29] Weissler, F.B. Semilinear evolution equations in Banach spaces, J. Funct. Anal., Volume 32 (1979), pp. 277–296 | DOI | MR | Zbl

[30] Weissler, F.B. Local existence and nonexistence for semilinear parabolic equations in Lp , Indiana Univ. Math. J., Volume 29 (1980), pp. 79–102 | DOI | MR | Zbl

[31] Weissler, F.B. Existence and nonexistence of global solutions for a semilinear heat equation, Isr. J. Math., Volume 38 (1981), pp. 29–40 | DOI | MR | Zbl

[32] Weissler, F.B. Nonlinear Functional Analysis and Its Applications, Proc. Symp. Pure Math., Volume 45 (1986), pp. 545–551 | DOI | MR | Zbl

Cité par Sources :