Nonlinear heat equations in two dimensions with singular initial data are studied. In recent works nonlinearities with exponential growth of Trudinger-Moser type have been shown to manifest critical behavior: well-posedness in the subcritical case and non-existence for certain supercritical data. In this article we propose a specific model nonlinearity with Trudinger-Moser growth for which we obtain surprisingly complete results: a) for initial data strictly below a certain singular threshold function the problem is well-posed, b) for initial data above this threshold function , there exists no solution, c) for the singular initial datum there is non-uniqueness. The function is a weak stationary singular solution of the problem, and we show that there exists also a regularizing classical solution with the same initial datum .
@article{AIHPC_2019__36_7_2027_0, author = {Ioku, Norisuke and Ruf, Bernhard and Terraneo, Elide}, title = {Non-uniqueness for a critical heat equation in two dimensions with singular data}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {2027--2051}, publisher = {Elsevier}, volume = {36}, number = {7}, year = {2019}, doi = {10.1016/j.anihpc.2019.07.004}, mrnumber = {4020532}, zbl = {1427.35096}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.004/} }
TY - JOUR AU - Ioku, Norisuke AU - Ruf, Bernhard AU - Terraneo, Elide TI - Non-uniqueness for a critical heat equation in two dimensions with singular data JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 2027 EP - 2051 VL - 36 IS - 7 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.004/ DO - 10.1016/j.anihpc.2019.07.004 LA - en ID - AIHPC_2019__36_7_2027_0 ER -
%0 Journal Article %A Ioku, Norisuke %A Ruf, Bernhard %A Terraneo, Elide %T Non-uniqueness for a critical heat equation in two dimensions with singular data %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 2027-2051 %V 36 %N 7 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.004/ %R 10.1016/j.anihpc.2019.07.004 %G en %F AIHPC_2019__36_7_2027_0
Ioku, Norisuke; Ruf, Bernhard; Terraneo, Elide. Non-uniqueness for a critical heat equation in two dimensions with singular data. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 2027-2051. doi : 10.1016/j.anihpc.2019.07.004. http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.004/
[1] Sobolev Spaces, Pure and Applied Mathematics, Academic Press, 2003 | MR | Zbl
[2] Interpolation Spaces. An Introduction, Grundlehren der Mathematischen Wissenschaften, vol. 223, Springer-Verlag, Berlin-New York, 1976 | MR | Zbl
[3] Heat equation and the principle of not feeling the boundary, Proc. R. Soc. Edinb., Sect. A, Volume 112 (1989), pp. 257–262 | DOI | MR | Zbl
[4] A nonlinear heat equation with singular initial data, J. Anal. Math., Volume 68 (1996), pp. 186–212 | DOI | MR | Zbl
[5] Adv. in Math. Suppl. Stud., vol. 7A, Academic Press, New York and London (1981), pp. 263–266 | MR | Zbl
[6] Blow up for revisited, Adv. Differ. Equ., Volume 1 (1996), pp. 73–90 | MR | Zbl
[7] An Introduction to Semilinear Elliptic Equations, Editora do IM-UFRJ, Rio de Janeiro, 2006 (ix+193 pp.)
[8] The Cauchy problem for the critical nonlinear Schrödinger equation in , Nonlinear Anal., Theory Methods Appl., Volume 14 (1990), pp. 807–836 | DOI | MR | Zbl
[9] Energy critical NLS in two space dimensions, J. Hyperbolic Differ. Equ., Volume 6 (2009), pp. 549–575 | DOI | MR | Zbl
[10] Existence and non-existence of radial solutions for elliptic equations with critical exponent in , Commun. Pure Appl. Math., Volume 48 (1995), pp. 639–655 | DOI | MR | Zbl
[11] Existence and nonexistence of solutions for the heat equation with a superlinear source term, J. Math. Pures Appl. (9), Volume 118 (2018), pp. 128–158 | DOI | MR | Zbl
[12] On some nonexistence and nonuniqueness theorems for nonlinear parabolic equations, Nonlinear Funct. Anal. (1970), pp. 105–113 | DOI | MR | Zbl
[13] Asymptotic behavior and decay estimates of the solutions for a nonlinear parabolic equation with exponential nonlinearity, J. Differ. Equ., Volume 262 (2017), pp. 145–180 | DOI | MR | Zbl
[14] Continuation of blowup solutions of nonlinear heat equations in several space dimensions, Commun. Pure Appl. Math., Volume 50 (1997) no. 1, pp. 1–67 | DOI | MR | Zbl
[15] Local well posedness of a 2D semilinear heat equation, Bull. Belg. Math. Soc. Simon Stevin, Volume 21 (2014) no. 3, pp. 535–551 | DOI | MR | Zbl
[16] The Cauchy problem for heat equations with exponential nonlinearity, J. Differ. Equ., Volume 251 (2011), pp. 1172–1194 | DOI | MR | Zbl
[17] Existence, non-existence, and uniqueness for a heat equation with exponential nonlinearity in , Math. Phys. Anal. Geom., Volume 18 (2015) no. 18, pp. 29 | MR | Zbl
[18] Global existence and decay estimates for the heat equation with general power-exponential nonlinearities, Proc. Int. Cong. Math., Volume 2 (2018), pp. 2379–2404 (Rio de Janeiro) | MR | Zbl
[19] Radial solutions of with prescribed numbers of zeros, J. Differ. Equ., Volume 83 (1990), pp. 368–378 | DOI | MR | Zbl
[20] A sharp form of an inequality by N. Trudinger, Indiana Univ. Math. J., Volume 20 (1971), pp. 1077–1092 | DOI | MR | Zbl
[21] Nonlinear Schrödinger equations in the Sobolev space of critical order, J. Funct. Anal., Volume 155 (1998), pp. 364–380 | DOI | MR | Zbl
[22] Singular behavior in nonlinear parabolic equations, Trans. Am. Math. Soc., Volume 287 (1985), pp. 657–671 | MR | Zbl
[23] Proc. Tech. Sci. Conf. on Adv. Sci., Research 1964–1965, Mathematics Section, The Sobolev embedding in the case (1965), pp. 158–170 (Moskov. Ènerget. Inst., Moscow, 1965)
[24] Superlinear Parabolic Problems, Birkhäuser Advanced Texts: Basler Lehrbücher, Birkhäuser Verlag, Basel, 2007 | MR | Zbl
[25] The Cauchy problem for a semilinear heat equation with singular initial data, Prog. Nonlinear Differ. Equ. Appl., Volume 50 (2002), pp. 295–309 | MR | Zbl
[26] Regular self-similar solutions of the nonlinear heat equation with initial data above the singular steady state, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 20 (2003), pp. 213–235 | DOI | Numdam | MR | Zbl
[27] Non-uniqueness for a critical non-linear heat equation, Commun. Partial Differ. Equ., Volume 27 (2002), pp. 185–218 | DOI | MR | Zbl
[28] On imbeddings into Orlicz spaces and some applications, J. Math. Mech., Volume 17 (1967), pp. 473–483 | MR | Zbl
[29] Semilinear evolution equations in Banach spaces, J. Funct. Anal., Volume 32 (1979), pp. 277–296 | DOI | MR | Zbl
[30] Local existence and nonexistence for semilinear parabolic equations in , Indiana Univ. Math. J., Volume 29 (1980), pp. 79–102 | DOI | MR | Zbl
[31] Existence and nonexistence of global solutions for a semilinear heat equation, Isr. J. Math., Volume 38 (1981), pp. 29–40 | DOI | MR | Zbl
[32] Nonlinear Functional Analysis and Its Applications, Proc. Symp. Pure Math., Volume 45 (1986), pp. 545–551 | DOI | MR | Zbl
Cité par Sources :