Infinite orbit depth and length of Melnikov functions
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 1941-1957.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

In this paper we study polynomial Hamiltonian systems dF=0 in the plane and their small perturbations: dF+ϵω=0. The first nonzero Melnikov function Mμ=Mμ(F,γ,ω) of the Poincaré map along a loop γ of dF=0 is given by an iterated integral [3]. In [7], we bounded the length of the iterated integral Mμ by a geometric number k=k(F,γ) which we call orbit depth. We conjectured that the bound is optimal.

Here, we give a simple example of a Hamiltonian system F and its orbit γ having infinite orbit depth. If our conjecture is true, for this example there should exist deformations dF+ϵω with arbitrary high length first nonzero Melnikov function Mμ along γ. We construct deformations dF+ϵω=0 whose first nonzero Melnikov function Mμ is of length three and explain the difficulties in constructing deformations having high length first nonzero Melnikov functions Mμ.

DOI : 10.1016/j.anihpc.2019.07.003
Classification : 34C07, 34C05, 34C08
Mots-clés : Iterated integrals, Center problem
Mardešić, Pavao 1 ; Novikov, Dmitry 2 ; Ortiz-Bobadilla, Laura 3 ; Pontigo-Herrera, Jessie 2

1 Université de Bourgogne, Institute de Mathématiques de Bourgogne - UMR 5584 CNRS, Université de Bourgogne-Franche-Comté, 9 avenue Alain Savary, BP 47870, 21078 Dijon, France
2 Faculty of Mathematics and Computer Science, Weizmann Institute of Science, Rehovot, 7610001, Israel
3 Instituto de Matemáticas, Universidad Nacional Autónoma de México (UNAM), Área de la Investigación Científica, Circuito exterior, Ciudad Universitaria, 04510, Ciudad de México, Mexico
@article{AIHPC_2019__36_7_1941_0,
     author = {Marde\v{s}i\'c, Pavao and Novikov, Dmitry and Ortiz-Bobadilla, Laura and Pontigo-Herrera, Jessie},
     title = {Infinite orbit depth and length of {Melnikov} functions},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1941--1957},
     publisher = {Elsevier},
     volume = {36},
     number = {7},
     year = {2019},
     doi = {10.1016/j.anihpc.2019.07.003},
     mrnumber = {4020529},
     zbl = {1435.37086},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.003/}
}
TY  - JOUR
AU  - Mardešić, Pavao
AU  - Novikov, Dmitry
AU  - Ortiz-Bobadilla, Laura
AU  - Pontigo-Herrera, Jessie
TI  - Infinite orbit depth and length of Melnikov functions
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1941
EP  - 1957
VL  - 36
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.003/
DO  - 10.1016/j.anihpc.2019.07.003
LA  - en
ID  - AIHPC_2019__36_7_1941_0
ER  - 
%0 Journal Article
%A Mardešić, Pavao
%A Novikov, Dmitry
%A Ortiz-Bobadilla, Laura
%A Pontigo-Herrera, Jessie
%T Infinite orbit depth and length of Melnikov functions
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1941-1957
%V 36
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.003/
%R 10.1016/j.anihpc.2019.07.003
%G en
%F AIHPC_2019__36_7_1941_0
Mardešić, Pavao; Novikov, Dmitry; Ortiz-Bobadilla, Laura; Pontigo-Herrera, Jessie. Infinite orbit depth and length of Melnikov functions. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 1941-1957. doi : 10.1016/j.anihpc.2019.07.003. http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.003/

[1] Arnold, V.I.; Gusein-Zade, S.M.; Varchenko, A.N. Singularities of Differentiable Maps, vol. II, Monodromy and Asymptotics of Integrals, Birkhäuser Boston Inc., Boston, MA, 1988 | MR | Zbl

[2] Françoise, J.-P. Successive derivatives of a first return map, application to the study of quadratic vector fields, Ergod. Theory Dyn. Syst., Volume 16 (1996) no. 1, pp. 87–96 | MR | Zbl

[3] Gavrilov, L. Higher order Poincaré-Pontryagin functions and iterated path integrals, Ann. Fac. Sci. Toulouse Math. (6), Volume 14 (2005) no. 4, pp. 663–682 | DOI | Numdam | MR | Zbl

[4] Gavrilov, L.; Iliev, I.D. The displacement map associated to polynomial unfoldings of planar Hamiltonian vector fields, Am. J. Math., Volume 127 (2005) no. 6, pp. 1153–1190 | DOI | MR | Zbl

[5] Hà, H.V.; Lê, D.T. Sur la topologie des polynômes complexes, Acta Math. Vietnam., Volume 9 (1984) no. 1, pp. 21–32 | MR | Zbl

[6] Ilyashenko, Yu.S. The appearance of limit cycles under a perturbation of the equation dw/dz=Rz/Rw, where R(z,w) is a polynomial, Mat. Sb. (N.S.), Volume 78 (1969) no. 120, pp. 360–373 (Russian) | MR

[7] Mardešić, P.; Novikov, D.; Ortiz-Bobadilla, L.; Pontigo-Herrera, J. Bounding the length of iterated integrals of the first nonzero Melnikov function, Mosc. Math. J., Volume 18 (2018) no. 2, pp. 1–20 | MR | Zbl

Cité par Sources :