In this paper we study polynomial Hamiltonian systems in the plane and their small perturbations: . The first nonzero Melnikov function of the Poincaré map along a loop γ of is given by an iterated integral [3]. In [7], we bounded the length of the iterated integral by a geometric number which we call orbit depth. We conjectured that the bound is optimal.
Here, we give a simple example of a Hamiltonian system F and its orbit γ having infinite orbit depth. If our conjecture is true, for this example there should exist deformations with arbitrary high length first nonzero Melnikov function along γ. We construct deformations whose first nonzero Melnikov function is of length three and explain the difficulties in constructing deformations having high length first nonzero Melnikov functions .
Mots-clés : Iterated integrals, Center problem
@article{AIHPC_2019__36_7_1941_0, author = {Marde\v{s}i\'c, Pavao and Novikov, Dmitry and Ortiz-Bobadilla, Laura and Pontigo-Herrera, Jessie}, title = {Infinite orbit depth and length of {Melnikov} functions}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1941--1957}, publisher = {Elsevier}, volume = {36}, number = {7}, year = {2019}, doi = {10.1016/j.anihpc.2019.07.003}, mrnumber = {4020529}, zbl = {1435.37086}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.003/} }
TY - JOUR AU - Mardešić, Pavao AU - Novikov, Dmitry AU - Ortiz-Bobadilla, Laura AU - Pontigo-Herrera, Jessie TI - Infinite orbit depth and length of Melnikov functions JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 1941 EP - 1957 VL - 36 IS - 7 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.003/ DO - 10.1016/j.anihpc.2019.07.003 LA - en ID - AIHPC_2019__36_7_1941_0 ER -
%0 Journal Article %A Mardešić, Pavao %A Novikov, Dmitry %A Ortiz-Bobadilla, Laura %A Pontigo-Herrera, Jessie %T Infinite orbit depth and length of Melnikov functions %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 1941-1957 %V 36 %N 7 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.003/ %R 10.1016/j.anihpc.2019.07.003 %G en %F AIHPC_2019__36_7_1941_0
Mardešić, Pavao; Novikov, Dmitry; Ortiz-Bobadilla, Laura; Pontigo-Herrera, Jessie. Infinite orbit depth and length of Melnikov functions. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 1941-1957. doi : 10.1016/j.anihpc.2019.07.003. http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.003/
[1] Singularities of Differentiable Maps, vol. II, Monodromy and Asymptotics of Integrals, Birkhäuser Boston Inc., Boston, MA, 1988 | MR | Zbl
[2] Successive derivatives of a first return map, application to the study of quadratic vector fields, Ergod. Theory Dyn. Syst., Volume 16 (1996) no. 1, pp. 87–96 | MR | Zbl
[3] Higher order Poincaré-Pontryagin functions and iterated path integrals, Ann. Fac. Sci. Toulouse Math. (6), Volume 14 (2005) no. 4, pp. 663–682 | DOI | Numdam | MR | Zbl
[4] The displacement map associated to polynomial unfoldings of planar Hamiltonian vector fields, Am. J. Math., Volume 127 (2005) no. 6, pp. 1153–1190 | DOI | MR | Zbl
[5] Sur la topologie des polynômes complexes, Acta Math. Vietnam., Volume 9 (1984) no. 1, pp. 21–32 | MR | Zbl
[6] The appearance of limit cycles under a perturbation of the equation , where is a polynomial, Mat. Sb. (N.S.), Volume 78 (1969) no. 120, pp. 360–373 (Russian) | MR
[7] Bounding the length of iterated integrals of the first nonzero Melnikov function, Mosc. Math. J., Volume 18 (2018) no. 2, pp. 1–20 | MR | Zbl
Cité par Sources :