The Bramson delay in the non-local Fisher-KPP equation
Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 1, pp. 51-77.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

Dans cet article, nous considérons l'équation de Fisher-KPP non locale, qui modélise la dynamique d'une population ou la force de compétition pour les ressources dépend de la distance entre les individus. Nous obtenons une asymptotique précise en temps long de la position d'une population qui est initialement localisée en espace. Selon la décroissance à l'infini du noyau de compétition, la position du front est soit 2t(3/2)logt+O(1), comme dans le cas de l'équation locale, soit 2tO(tβ), pour un β(0,1) calculé explicitement. Les outils les plus importants utilisés dans cet article sont une version locale en temps d'une inégalité de Harnack parabolique ainsi qu'une analyse fine du problème linéarisé avec une condition de bord de Dirichlet dynamique. Notre analyse donne aussi, pour tout β(0,1), des exemples de non-linéarités de type Fisher-KPP pour lesquelles le front se trouve en 2tO(tβ).

We consider the non-local Fisher-KPP equation modeling a population with individuals competing with each other for resources with a strength related to their distance, and obtain the asymptotics for the position of the invasion front starting from a localized population. Depending on the behavior of the competition kernel at infinity, the location of the front is either 2t(3/2)logt+O(1), as in the local case, or 2tO(tβ) for some explicit β(0,1). Our main tools here are a local-in-time Harnack inequality and an analysis of the linearized problem with a suitable moving Dirichlet boundary condition. Our analysis also yields, for any β(0,1), examples of Fisher-KPP type non-linearities fβ such that the front for the local Fisher-KPP equation with reaction term fβ is at 2tO(tβ).

DOI : 10.1016/j.anihpc.2019.07.001
Classification : 35K57, 35Q92, 45K05, 35C07
Mots-clés : Reaction-diffusion equations, Logarithmic delay, Parabolic Harnack inequality
Bouin, Emeric 1 ; Henderson, Christopher 2 ; Ryzhik, Lenya 3

1 CEREMADE - Université Paris-Dauphine, UMR CNRS 7534, Place du Maréchal de Lattre de Tassigny, 75775 Paris Cedex 16, France
2 Department of Mathematics, University of Arizona, Tucson, AZ 85721, United States of America
3 Department of Mathematics, Stanford University, Stanford, CA 94305, United States of America
@article{AIHPC_2020__37_1_51_0,
     author = {Bouin, Emeric and Henderson, Christopher and Ryzhik, Lenya},
     title = {The {Bramson} delay in the non-local {Fisher-KPP} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {51--77},
     publisher = {Elsevier},
     volume = {37},
     number = {1},
     year = {2020},
     doi = {10.1016/j.anihpc.2019.07.001},
     mrnumber = {4049916},
     zbl = {1436.35239},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.001/}
}
TY  - JOUR
AU  - Bouin, Emeric
AU  - Henderson, Christopher
AU  - Ryzhik, Lenya
TI  - The Bramson delay in the non-local Fisher-KPP equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2020
SP  - 51
EP  - 77
VL  - 37
IS  - 1
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.001/
DO  - 10.1016/j.anihpc.2019.07.001
LA  - en
ID  - AIHPC_2020__37_1_51_0
ER  - 
%0 Journal Article
%A Bouin, Emeric
%A Henderson, Christopher
%A Ryzhik, Lenya
%T The Bramson delay in the non-local Fisher-KPP equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2020
%P 51-77
%V 37
%N 1
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.001/
%R 10.1016/j.anihpc.2019.07.001
%G en
%F AIHPC_2020__37_1_51_0
Bouin, Emeric; Henderson, Christopher; Ryzhik, Lenya. The Bramson delay in the non-local Fisher-KPP equation. Annales de l'I.H.P. Analyse non linéaire, Tome 37 (2020) no. 1, pp. 51-77. doi : 10.1016/j.anihpc.2019.07.001. http://www.numdam.org/articles/10.1016/j.anihpc.2019.07.001/

[1] Berestycki, H.; Nadin, G.; Perthame, B.; Ryzhik, L. The non-local Fisher-KPP equation: travelling waves and steady states, Nonlinearity, Volume 22 (2009) no. 12, pp. 2813–2844 | DOI | MR | Zbl

[2] Berestycki, H.; Nirenberg, L. Travelling fronts in cylinders, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 9 (1992) no. 5, pp. 497–572 | DOI | Numdam | MR | Zbl

[3] E. Bouin, C. Henderson, Forthcoming.

[4] Bouin, E.; Henderson, C.; Ryzhik, L. The Bramson logarithmic delay in the cane toads equations, 2016 (preprint) | arXiv

[5] Bramson, M. Maximal displacement of branching Brownian motion, Commun. Pure Appl. Math., Volume 31 (1978) no. 5, pp. 531–581 | DOI | MR | Zbl

[6] Bramson, M. Convergence of solutions of the Kolmogorov equation to travelling waves, Mem. Amer. Math. Soc., Volume 44 (1983) no. 285 (iv+190) | MR | Zbl

[7] Britton, N.F. Spatial structures and periodic travelling waves in an integro-differential reaction-diffusion population model, SIAM J. Appl. Math., Volume 50 (1990) no. 6, pp. 1663–1688 | DOI | MR | Zbl

[8] Dennis, B.; Ponciano, J.M.; Lele, S.R.; Taper, M.L.; Staples, D.F. Estimating density dependence, process noise, and observation error, Ecol. Monogr., Volume 76 (2006) no. 3, pp. 323–341 | DOI

[9] Ducrot, A. On the large time behaviour of the multi-dimensional Fisher-KPP equation with compactly supported initial data, Nonlinearity, Volume 28 (2015) no. 4, pp. 1043–1076 | DOI | MR | Zbl

[10] Fang, J.; Zhao, X.-Q. Monotone wavefronts of the nonlocal Fisher-KPP equation, Nonlinearity, Volume 24 (2011) no. 11, pp. 3043–3054 | DOI | MR | Zbl

[11] Fang, M.; Zeitouni, O. Slowdown for time inhomogeneous branching Brownian motion, J. Stat. Phys., Volume 149 (2012) no. 1, pp. 1–9 | DOI | MR | Zbl

[12] Faye, G.; Holzer, M. Modulated traveling fronts for a nonlocal Fisher-KPP equation: a dynamical systems approach, J. Differ. Equ., Volume 258 (2015) no. 7, pp. 2257–2289 | DOI | MR | Zbl

[13] Genieys, S.; Volpert, V.; Auger, P. Pattern and waves for a model in population dynamics with nonlocal consumption of resources, Math. Model. Nat. Phenom., Volume 1 (2006) no. 1, pp. 65–82 | DOI | MR | Zbl

[14] Gourley, S.A. Travelling front solutions of a nonlocal Fisher equation, J. Math. Biol., Volume 41 (2000) no. 3, pp. 272–284 | DOI | MR | Zbl

[15] Hamel, F. Qualitative properties of monostable pulsating fronts: exponential decay and monotonicity, J. Math. Pures Appl. (9), Volume 89 (2008) no. 4, pp. 355–399 | DOI | MR | Zbl

[16] Hamel, F.; Henderson, C. Propagation in a Fisher-KPP equation with non-local advection, 2017 (preprint) | arXiv | MR

[17] Hamel, F.; Nolen, J.; Roquejoffre, J.-M.; Ryzhik, L. A short proof of the logarithmic Bramson correction in Fisher-KPP equations, Netw. Heterog. Media, Volume 8 (2013) no. 1, pp. 275–289 | DOI | MR | Zbl

[18] Hamel, F.; Nolen, J.; Roquejoffre, J.-M.; Ryzhik, L. The logarithmic delay of KPP fronts in a periodic medium, J. Eur. Math. Soc., Volume 18 (2016) no. 3, pp. 465–505 | DOI | MR | Zbl

[19] Hamel, F.; Ryzhik, L. On the nonlocal Fisher-KPP equation: steady states, spreading speed and global bounds, Nonlinearity, Volume 27 (2014) no. 11, pp. 2735–2753 | DOI | MR | Zbl

[20] Maillard, P.; Zeitouni, O. Slowdown in branching Brownian motion with inhomogeneous variance, Ann. Inst. Henri Poincaré Probab. Stat., Volume 52 (2016) no. 3, pp. 1144–1160 | DOI | MR | Zbl

[21] Nadin, G.; Rossi, L.; Ryzhik, L.; Perthame, B. Wave-like solutions for nonlocal reaction-diffusion equations: a toy model, Math. Model. Nat. Phenom., Volume 8 (2013) no. 3, pp. 33–41 | DOI | MR | Zbl

[22] Nolen, J.; Roquejoffre, J.-M.; Ryzhik, L. Power-like delay in time inhomogeneous Fisher-KPP equations, Commun. Partial Differ. Equ., Volume 40 (2015) no. 3, pp. 475–505 | DOI | MR | Zbl

[23] Nolen, J.; Roquejoffre, J.-M.; Ryzhik, L. Refined long time asymptotics for Fisher-KPP fronts, 2016 (arXiv preprint) | arXiv | MR

[24] Nolen, J.; Roquejoffre, J.-M.; Ryzhik, L. Convergence to a single wave in the Fisher-KPP equation, Chin. Ann. Math., Ser. B, Volume 38 (2017) no. 2, pp. 629–646 | DOI | MR | Zbl

[25] Penington, S. The spreading speed of solutions of the non-local Fisher-kpp equation | arXiv

[26] Roberts, M.I. A simple path to asymptotics for the frontier of a branching Brownian motion, Ann. Probab., Volume 41 (2013) no. 5, pp. 3518–3541 | DOI | MR | Zbl

[27] Uchiyama, K. The behavior of solutions of some nonlinear diffusion equations for large time, J. Math. Kyoto Univ., Volume 18 (1978) no. 3, pp. 453–508 | MR | Zbl

Cité par Sources :