Regularity theory for L n -viscosity solutions to fully nonlinear elliptic equations with asymptotical approximate convexity
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 1869-1902.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We develop interior W2,p,μ and W2,BMO regularity theories for Ln-viscosity solutions to fully nonlinear elliptic equations T(D2u,x)=f(x), where T is approximately convex at infinity. Particularly, W2,BMO regularity theory holds if operator T is locally semiconvex near infinity and all eigenvalues of D2T(M) are at least CM(1+σ0) as M. W2,BMO regularity for some Isaacs equations is given. We also show that the set of fully nonlinear operators of W2,BMO regularity theory is dense in the space of fully nonlinear uniformly elliptic operators.

DOI : 10.1016/j.anihpc.2019.06.001
Classification : 35J60, 35B65
Mots-clés : Fully nonlinear equation, Asymptotical approximate convexity, Viscosity solution, $ {W}^{2,p,\mu }$ regularity, $ {W}^{2,\mathrm{BMO}}$ regularity
@article{AIHPC_2019__36_7_1869_0,
     author = {Huang, Qingbo},
     title = {Regularity theory for $L^n$-viscosity solutions to fully nonlinear elliptic equations with asymptotical approximate convexity},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1869--1902},
     publisher = {Elsevier},
     volume = {36},
     number = {7},
     year = {2019},
     doi = {10.1016/j.anihpc.2019.06.001},
     mrnumber = {4020527},
     zbl = {1436.35159},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.06.001/}
}
TY  - JOUR
AU  - Huang, Qingbo
TI  - Regularity theory for $L^n$-viscosity solutions to fully nonlinear elliptic equations with asymptotical approximate convexity
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1869
EP  - 1902
VL  - 36
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2019.06.001/
DO  - 10.1016/j.anihpc.2019.06.001
LA  - en
ID  - AIHPC_2019__36_7_1869_0
ER  - 
%0 Journal Article
%A Huang, Qingbo
%T Regularity theory for $L^n$-viscosity solutions to fully nonlinear elliptic equations with asymptotical approximate convexity
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1869-1902
%V 36
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2019.06.001/
%R 10.1016/j.anihpc.2019.06.001
%G en
%F AIHPC_2019__36_7_1869_0
Huang, Qingbo. Regularity theory for $L^n$-viscosity solutions to fully nonlinear elliptic equations with asymptotical approximate convexity. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 1869-1902. doi : 10.1016/j.anihpc.2019.06.001. http://www.numdam.org/articles/10.1016/j.anihpc.2019.06.001/

[1] Byun, S.; Lee, M.; Palagachev, D. Hessian estimates in weighted Lebesgue spaces for fully nonlinear elliptic equations, J. Differ. Equ., Volume 260 (2016), pp. 4550–4571 | DOI | MR | Zbl

[2] Caffarelli, L. Interior a priori estimates for solution of fully nonlinear equations, Ann. Math., Volume 130 (1989), pp. 189–213 | DOI | MR | Zbl

[3] Caffarelli, L.; Cabré, X. Fully Nonlinear Elliptic Equations, AMS Colloquium Publications, vol. 43, AMS, Rhode Island, 1993 | MR | Zbl

[4] Cabré, X.; Caffarelli, L. Interior C2,α regularity theory for a class of nonconvex fully nonlinear elliptic equations, J. Math. Pures Appl., Volume 82 (2003), pp. 573–612 | DOI | MR | Zbl

[5] Caffarelli, L.; Crandall, M.; Kocan, M.; Swiech, A. On viscosity solutions of fully nonlinear equations with measurable ingredients, Commun. Pure Appl. Math., Volume XLIX (1996), pp. 365–397 | MR | Zbl

[6] Caffarelli, L.; Huang, Q. Estimates in the generalized Campanato-John-Nirenberg spaces for fully nonlinear elliptic equations, Duke Math. J., Volume 118 (2003), pp. 1–17 | DOI | MR | Zbl

[7] Caffarelli, L.; Li, Y.Y.; Nirenberg, L. Some remarks on singular solutions of nonlinear elliptic equations. III: viscosity solutions, including parabolic operators, Commun. Pure Appl. Math., Volume 66 (2013), pp. 109–143 | DOI | MR | Zbl

[8] Caffarelli, L.; Yuan, Y. A priori estimates for solutions of fully nonlinear equations with convex level set, Indiana Univ. Math. J., Volume 49 (2000), pp. 681–695 | DOI | MR | Zbl

[9] Crandall, M.G.; Kocan, M.; Lions, P.L.; Swiech, A. Existence results for boundary problems for uniformly elliptic and parabolic fully nonlinear equations, Electron. J. Differ. Equ., Volume 24 (1999), pp. 1–20 | MR | Zbl

[10] Dilworth, S.J.; Howard, R.; Roberts, J.W. Extremal approximately convex functions and estimating the size of convex hulls, Adv. Math., Volume 148 (1999), pp. 1–43 | DOI | MR | Zbl

[11] Escauriaza, L. W2,n a priori estimates for solutions to fully nonlinear elliptic equations, Indiana Univ. Math. J., Volume 42 (1993), pp. 413–423 | DOI | MR | Zbl

[12] Evans, L.C. Classical solutions of fully nonlinear, convex, second-order elliptic equations, Commun. Pure Appl. Math., Volume XXV (1982), pp. 333–363 | MR | Zbl

[13] Giaquinta, M. Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. of Math. Studies, vol. 105, Princeton Univ. Press, Princeton, NJ, 1983 | MR | Zbl

[14] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, Springer-Verlag, 1983 | MR | Zbl

[15] Huang, Q. Estimates on the generalized morrey spaces Lϕ2,λ and BMOψ for linear elliptic systems, Indiana Univ. Math. J., Volume 45 (1996), pp. 397–439 | DOI | MR | Zbl

[16] Huang, Q. On the regularity of solutions to fully nonlinear elliptic equations via Liouville property, Proc. Am. Math. Soc., Volume 130 (2002), pp. 1955–1959 | DOI | MR | Zbl

[17] Krylov, N.V. Bounded nonhomogeneous elliptic and parabolic equations, Izv. Akad. Nak. SSSR Ser. Mat., Volume 46 (1982), pp. 487–523 | MR | Zbl

[18] Krylov, N.V. On the existence of Wp2 solutions for fully nonlinear elliptic equations under relaxed convexity assumptions, Commun. Partial Differ. Equ., Volume 38 (2013), pp. 687–710 | DOI | MR | Zbl

[19] Krylov, N.V. On the existence of Wp2 solutions for fully nonlinear elliptic equations under either relaxed or no convexity assumptions | arXiv

[20] Nadirashvili, N.; Vlăduţ, S. Singular solutions of Hessian fully nonlinear elliptic equations, Adv. Math., Volume 228 (2011), pp. 1718–1741 | DOI | MR | Zbl

[21] Pimentel, E.A.; Teixeira, E.V. Sharp Hessian integrability estimates for nonlinear elliptic equations: An asymptotic approach, J. Math. Pures Appl., Volume 106 (2016), pp. 744–767 | DOI | MR | Zbl

[22] Strömberg, J.-O. Bounded mean oscillation with Orlicz norms and duality of Hardy spaces, Indiana Univ. Math. J., Volume 28 (1979), pp. 511–544 | MR | Zbl

Cité par Sources :