Spectral structure of the Neumann–Poincaré operator on tori
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 1817-1828.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We address the question whether there is a three-dimensional bounded domain such that the Neumann–Poincaré operator defined on its boundary has infinitely many negative eigenvalues. It is proved in this paper that tori have such a property. It is done by decomposing the Neumann–Poincaré operator on tori into infinitely many self-adjoint compact operators on a Hilbert space defined on the circle using the toroidal coordinate system and the Fourier basis, and then by proving that the numerical range of infinitely many operators in the decomposition has both positive and negative values.

DOI : 10.1016/j.anihpc.2019.05.002
Classification : 47A45, 31B25
Mots-clés : Neumann-Poincaré operator, Negative eigenvalues, Tori, Stationary phase method
Ando, Kazunori 1 ; Ji, Yong-Gwan 2 ; Kang, Hyeonbae 2 ; Kawagoe, Daisuke 3 ; Miyanishi, Yoshihisa 4

1 Department of Electrical and Electronic Engineering and Computer Science, Ehime University, Ehime 790-8577, Japan
2 Department of Mathematics and Institute of Applied Mathematics, Inha University, Incheon 22212, South Korea
3 Graduate School of Informatics, Kyoto University, Kyoto 606-8501, Japan
4 Center for Mathematical Modeling and Data Science, Osaka University, Osaka 560-8531, Japan
@article{AIHPC_2019__36_7_1817_0,
     author = {Ando, Kazunori and Ji, Yong-Gwan and Kang, Hyeonbae and Kawagoe, Daisuke and Miyanishi, Yoshihisa},
     title = {Spectral structure of the {Neumann{\textendash}Poincar\'e} operator on tori},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1817--1828},
     publisher = {Elsevier},
     volume = {36},
     number = {7},
     year = {2019},
     doi = {10.1016/j.anihpc.2019.05.002},
     mrnumber = {4020525},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.05.002/}
}
TY  - JOUR
AU  - Ando, Kazunori
AU  - Ji, Yong-Gwan
AU  - Kang, Hyeonbae
AU  - Kawagoe, Daisuke
AU  - Miyanishi, Yoshihisa
TI  - Spectral structure of the Neumann–Poincaré operator on tori
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1817
EP  - 1828
VL  - 36
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2019.05.002/
DO  - 10.1016/j.anihpc.2019.05.002
LA  - en
ID  - AIHPC_2019__36_7_1817_0
ER  - 
%0 Journal Article
%A Ando, Kazunori
%A Ji, Yong-Gwan
%A Kang, Hyeonbae
%A Kawagoe, Daisuke
%A Miyanishi, Yoshihisa
%T Spectral structure of the Neumann–Poincaré operator on tori
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1817-1828
%V 36
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2019.05.002/
%R 10.1016/j.anihpc.2019.05.002
%G en
%F AIHPC_2019__36_7_1817_0
Ando, Kazunori; Ji, Yong-Gwan; Kang, Hyeonbae; Kawagoe, Daisuke; Miyanishi, Yoshihisa. Spectral structure of the Neumann–Poincaré operator on tori. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 1817-1828. doi : 10.1016/j.anihpc.2019.05.002. http://www.numdam.org/articles/10.1016/j.anihpc.2019.05.002/

[1] Ahner, J.F. On the eigenvalues of the electrostatic integral operator. II, J. Math. Anal. Appl., Volume 181 (1994), pp. 328–334 | DOI | MR | Zbl

[2] Ahner, J.F.; Arenstorf, R.F. On the eigenvalues of the electrostatic integral operator, J. Math. Anal. Appl., Volume 117 (1986), pp. 187–197 | DOI | MR | Zbl

[3] Ammari, H.; Ciraolo, G.; Kang, H.; Lee, H.; Milton, G.W. Spectral theory of a Neumann-Poincaré-type operator and analysis of cloaking due to anomalous localized resonance, Arch. Ration. Mech. Anal., Volume 208 (2013), pp. 667–692 | DOI | MR | Zbl

[4] Ammari, H.; Kang, H. Polarization and Moment Tensors, Applied Mathematical Sciences, vol. 162, Springer, New York, 2007 | MR | Zbl

[5] Ammari, H.; Millien, P.; Ruiz, M.; Zhang, H. Mathematical analysis of plasmonic nanoparticles: the scalar case, Arch. Ration. Mech. Anal., Volume 224 (2017), pp. 597–658 | DOI | MR

[6] Ando, K.; Kang, H. Analysis of plasmon resonance on smooth domains using spectral properties of the Neumann-Poincare operator, J. Math. Anal. Appl., Volume 435 (2016), pp. 162–178 | DOI | MR

[7] Ando, K.; Kang, H.; Miyanishi, Y. Exponential decay estimates of the eigenvalues for the Neumann-Poincaré operator on analytic boundaries in two dimensions, J. Integral Equ. Appl., Volume 30 (2018), pp. 473–489 | DOI | MR

[8] Bates, J.W. On toroidal Green's functions, J. Math. Phys., Volume 38 (1997), pp. 3679–3691 | DOI | MR | Zbl

[9] Bonnetier, E.; Triki, F. On the spectrum of Poincaré variational problem for two close-to-touching inclusions in 2D, Arch. Ration. Mech. Anal., Volume 209 (2013), pp. 541–567 | DOI | MR | Zbl

[10] Bonnetier, E.; Zhang, H. Characterization of the essential spectrum of the Neumann-Poincaré operator in 2D domains with corner via Weyl sequences, Rev. Mat. Iberoam., Volume 35 (2019), pp. 925–948 | DOI | MR

[11] Coifman, R.R.; McIntosh, A.; Meyer, Y. L'intégrale de Cauchy définit un opérateur borné sur L2 pour les courbes lipschitziennes, Ann. Math., Volume 116 (1982), pp. 361–387 | DOI | MR | Zbl

[12] Colton, D.; Kress, R. Integral Equation Methods in Scattering Theory, Wiley, New York, 1983 | MR | Zbl

[13] Feng, T.; Kang, H. Spectrum of the Neumann-Poincaré operator for ellipsoids and tunability, Integral Equ. Oper. Theory, Volume 84 (2016), pp. 591–599 | DOI | MR

[14] Folland, G.B. Introduction to Partial Differential Equations, Princeton Univ. Press, Princeton, 1995 | MR | Zbl

[15] Hörmander, L. The Analysis of Linear Partial Differential Operators I, Springer-Verlag, Berlin, Heidelberg, 2003 | MR | Zbl

[16] Helsing, J.; Kang, H.; Lim, M. Classification of spectra of the Neumann–Poincaré operator on planar domains with corners by resonance, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 34 (2017), pp. 991–1011 | DOI | Numdam | MR

[17] Helsing, J.; Perfekt, K.-M. The spectra of harmonic layer potential operators on domains with rotationally symmetric conical points, J. Math. Pures Appl., Volume 118 (2018), pp. 235–287 | DOI | MR

[18] Ji, Y.; Kang, H. A concavity condition for existence of a negative Neumann-Poincaré eigenvalue in three dimensions, Proc. Am. Math. Soc. (2019) (in press) | arXiv | DOI | MR

[19] Kang, H.; Kim, K.; Lee, H.; Shin, J.; Yu, S. Spectral properties of the Neumann-Poincaré operator and uniformity of estimates for the conductivity equation with complex coefficients, J. Lond. Math. Soc., Volume 93 (2016), pp. 519–546 | DOI | MR

[20] Kang, H.; Lim, M.; Yu, S. Spectral resolution of the Neumann-Poincaré operator on intersecting disks and analysis of plasmon resonance, Arch. Ration. Mech. Anal., Volume 226 (2017), pp. 83–115 | DOI | MR

[21] Khavinson, D.; Putinar, M.; Shapiro, H.S. Poincaré's variational problem in potential theory, Arch. Ration. Mech. Anal., Volume 185 (2007), pp. 143–184 | DOI | MR | Zbl

[22] Lim, M. Symmetry of a boundary integral operator and a characterization of a ball, Ill. J. Math., Volume 45 (2001), pp. 537–543 | MR | Zbl

[23] Martensen, E. A spectral property of the electrostatic integral operator, J. Math. Anal. Appl., Volume 238 (1999), pp. 551–557 | DOI | MR | Zbl

[24] Mayergoyz, I.D.; Fredkin, D.R.; Zhang, Z. Electrostatic (plasmon) resonances in nanoparticles, Phys. Rev. B, Volume 72 (2005) | DOI

[25] Miyanishi, Y. Weyl's law for the eigenvalues of the Neumann-Poincaré operators in three dimensions: Willmore energy and surface geometry | arXiv

[26] Miyanishi, Y.; Suzuki, T. Eigenvalues and eigenfunctions of double layer potentials, Trans. Am. Math. Soc., Volume 369 (2017), pp. 8037–8059 | DOI | MR

[27] Neumann, C. Über die Methode des arithmetischen Mittels, Erste and zweite Abhandlung, S. Hirzel, Leipzig, 1887/88 (in Abh. d. Kgl. Sächs Ges. d. Wiss., IX and XIII) | JFM

[28] Perfekt, K.-M.; Putinar, M. Spectral bounds for the Neumann-Poincaré operator on planar domains with corners, J. Anal. Math., Volume 124 (2014), pp. 39–57 | MR | Zbl

[29] Perfekt, K.-M.; Putinar, M. The essential spectrum of the Neumann–Poincare operator on a domain with corners, Arch. Ration. Mech. Anal., Volume 223 (2017), pp. 1019–1033 | MR

[30] Poincaré, H. La méthode de Neumann et le problème de Dirichlet, Acta Math., Volume 20 (1897), pp. 59–152 | DOI | JFM | MR

[31] Ritter, S.; Kleinman, R.F.; Kress, R.; Marstensen, E. The spectrum of the electrostatic integral operator for an ellipsoid, Inverse Scattering and Potential Problems in Mathematical Physics, Lang, Frankfurt/Bern, 1995, pp. 157–167 | MR | Zbl

[32] Verchota, G.C. Layer potentials and boundary value problems for Laplace's equation in Lipschitz domains, J. Funct. Anal., Volume 59 (1984), pp. 572–611 | DOI | MR | Zbl

Cité par Sources :