Axially asymmetric traveling fronts in balanced bistable reaction-diffusion equations
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 1791-1816.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

For a balanced bistable reaction-diffusion equation, an axisymmetric traveling front has been well known. This paper proves that an axially asymmetric traveling front with any positive speed does exist in a balanced bistable reaction-diffusion equation. Our method is as follows. We use a pyramidal traveling front for an unbalanced reaction-diffusion equation whose cross section has a major axis and a minor axis. Preserving the ratio of the major axis and a minor axis to be a constant and taking the balanced limit, we obtain a traveling front in a balanced bistable reaction-diffusion equation. This traveling front is monotone decreasing with respect to the traveling axis, and its cross section is a compact set with a major axis and a minor axis when the constant ratio is not 1.

DOI : 10.1016/j.anihpc.2019.05.001
Classification : 35C07, 35B20, 35K57
Mots-clés : Traveling front, Reaction-diffusion equation, Asymmetric, Balanced
@article{AIHPC_2019__36_7_1791_0,
     author = {Taniguchi, Masaharu},
     title = {Axially asymmetric traveling fronts in balanced bistable reaction-diffusion equations},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1791--1816},
     publisher = {Elsevier},
     volume = {36},
     number = {7},
     year = {2019},
     doi = {10.1016/j.anihpc.2019.05.001},
     mrnumber = {4020524},
     zbl = {1428.35073},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.05.001/}
}
TY  - JOUR
AU  - Taniguchi, Masaharu
TI  - Axially asymmetric traveling fronts in balanced bistable reaction-diffusion equations
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1791
EP  - 1816
VL  - 36
IS  - 7
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2019.05.001/
DO  - 10.1016/j.anihpc.2019.05.001
LA  - en
ID  - AIHPC_2019__36_7_1791_0
ER  - 
%0 Journal Article
%A Taniguchi, Masaharu
%T Axially asymmetric traveling fronts in balanced bistable reaction-diffusion equations
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1791-1816
%V 36
%N 7
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2019.05.001/
%R 10.1016/j.anihpc.2019.05.001
%G en
%F AIHPC_2019__36_7_1791_0
Taniguchi, Masaharu. Axially asymmetric traveling fronts in balanced bistable reaction-diffusion equations. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 7, pp. 1791-1816. doi : 10.1016/j.anihpc.2019.05.001. http://www.numdam.org/articles/10.1016/j.anihpc.2019.05.001/

[1] Angenent, S. Nonlinear Diffusion Equations and Their Equilibrium States, 3, Shrinking doughnuts (Progr. Nonlinear Differential Equations Appl.), Volume vol. 7, Birkhäuser Boston, Boston, MA (1992), pp. 21–38 (Gregynog, 1989) | MR | Zbl

[2] Chen, X. Existence, uniqueness, and asymptotic stability of traveling waves in nonlocal evolution equations, Adv. Differ. Equ., Volume 2 (1997) no. 1, pp. 125–160 | MR | Zbl

[3] Chen, X. Generation and propagation of interfaces in reaction-diffusion equations, J. Differ. Equ., Volume 96 (1992), pp. 116–141 | DOI | MR | Zbl

[4] Chen, X.; Guo, J.-S.; Hamel, F.; Ninomiya, H.; Roquejoffre, J.-M. Traveling waves with paraboloid like interfaces for balanced bistable dynamics, Ann. Inst. Henri Poincaré, Volume 24 (2007), pp. 369–393 | Numdam | MR | Zbl

[5] Daskalopoulos, P.; Hamilton, R.; Sesum, N. Classification of compact ancient solutions to the curve shortening flow, J. Differ. Geom., Volume 84 (2010) no. 3, pp. 455–464 | DOI | MR | Zbl

[6] Dávila, J.; del Pino, M.; Nguyen, X.H. Finite topology self-translating surfaces for the mean curvature flow in R3 , Adv. Math., Volume 320 (2017), pp. 674–729 | DOI | MR | Zbl

[7] del Pino, M.; Kowalczyk, M.; Wei, J. On De Giorgi's conjecture in dimension N9 , Ann. Math., Volume 174 (2011), pp. 1485–1569 | DOI | MR | Zbl

[8] del Pino, M.; Kowalczyk, M.; Wei, J. Traveling waves with multiple and nonconvex fronts for a bistable semilinear parabolic equation, Commun. Pure Appl. Math., Volume 66 (2013), pp. 481–547 | DOI | MR | Zbl

[9] Fife, P.C.; McLeod, J.B. The approach of solutions of nonlinear diffusion equations to travelling front solutions, Arch. Ration. Mech. Anal., Volume 65 (1977), pp. 335–361 | MR | Zbl

[10] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, Springer-Verlag, Berlin, 1983 | MR | Zbl

[11] Hamel, F.; Monneau, R.; Roquejoffre, J.-M. Existence and qualitative properties of multidimensional conical bistable fronts, Discrete Contin. Dyn. Syst., Volume 13 (2005) no. 4, pp. 1069–1096 | DOI | MR | Zbl

[12] Hamel, F.; Monneau, R.; Roquejoffre, J.-M. Asymptotic properties and classification of bistable fronts with Lipschitz level sets, Discrete Contin. Dyn. Syst., Volume 14 (2006) no. 1, pp. 75–92 | MR | Zbl

[13] Haragus, M.; Scheel, A. Corner defects in almost planar interface propagation, Ann. Inst. Henri Poincaré, Volume 23 (2006), pp. 283–329 | Numdam | MR | Zbl

[14] Kurokawa, Y.; Taniguchi, M. Multi-dimensional pyramidal traveling fronts in the Allen–Cahn equations, Proc. R. Soc. Edinb., Sect. A, Math., Volume 141 (2011), pp. 1031–1054 | DOI | MR | Zbl

[15] Ni, W.-M.; Taniguchi, M. Traveling fronts of pyramidal shapes in competition-diffusion systems, Netw. Heterog. Media, Volume 8 (2013) no. 1, pp. 379–395 | MR | Zbl

[16] Ninomiya, H.; Taniguchi, M. Existence and global stability of traveling curved fronts in the Allen–Cahn equations, J. Differ. Equ., Volume 213 (2005) no. 1, pp. 204–233 | DOI | MR | Zbl

[17] Ninomiya, H.; Taniguchi, M. Global stability of traveling curved fronts in the Allen–Cahn equations, Discrete Contin. Dyn. Syst., Volume 15 (2006) no. 3, pp. 819–832 | DOI | MR | Zbl

[18] Taniguchi, M. Traveling fronts of pyramidal shapes in the Allen–Cahn equations, SIAM J. Math. Anal., Volume 39 (2007) no. 1, pp. 319–344 | DOI | MR | Zbl

[19] Taniguchi, M. The uniqueness and asymptotic stability of pyramidal traveling fronts in the Allen–Cahn equations, J. Differ. Equ., Volume 246 (2009), pp. 2103–2130 | DOI | MR | Zbl

[20] Taniguchi, M. Pyramidal traveling fronts in the Allen–Cahn equations, RIMS Kôkyûroku, Volume 1651 (2009), pp. 92–109

[21] Taniguchi, M. Multi-dimensional traveling fronts in bistable reaction-diffusion equations, Discrete Contin. Dyn. Syst., Volume 32 (2012), pp. 1011–1046 | DOI | MR | Zbl

[22] Taniguchi, M. An (N1)-dimensional convex compact set gives an N -dimensional traveling front in the Allen–Cahn equation, SIAM J. Math. Anal., Volume 47 (2015) no. 1, pp. 455–476 | DOI | MR | Zbl

[23] Taniguchi, M. Convex compact sets in RN1 give traveling fronts of cooperation-diffusion systems in RN , J. Differ. Equ., Volume 260 (2016), pp. 4301–4338 | DOI | MR | Zbl

[24] M. Taniguchi, Traveling front solutions in reaction-diffusion equations, submitted for publication. | MR

[25] Wang, X.-J. Convex solutions to the mean curvature flow, Ann. Math., Volume 173 (2011), pp. 1185–1239 | MR | Zbl

[26] Wang, Z.-C. Traveling curved fronts in monotone bistable systems, Discrete Contin. Dyn. Syst., Volume 32 (2012), pp. 2339–2374 | MR | Zbl

Cité par Sources :