Boltzmann collision operator for the infinite range potential: A limit problem
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 6, pp. 1639-1677.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

The conventional Boltzmann collision operator for the infinite range inverse power law model was derived by Maxwell by adopting a collision kernel which is a limit of that for the finite range model by ignoring the glancing angles. Since the interpretation of collision operator for the infinite range potential through limit process to the one with finite range potential is natural in regard to the derivation of the Boltzmann equation. It is the purpose of this paper to clarify the physical meaning of the conventional collision operator for the infinite range inverse power law model through the study of the limiting process of the collision operator as the cutoff radius tends to infinity. We first estimate the extent in which the glancing angles can be ignored in the limiting process. Furthermore we prove that taking limit to collision operator with finite range potential directly will lead to the conventional one with algebraic convergence rate.

DOI : 10.1016/j.anihpc.2019.03.001
Mots-clés : Boltzmann collision operator, Infinite range potential, Radius cutoff, Fourier integral operator, Pseudodifferential operator
Jiang, Jin-Cheng 1 ; Liu, Tai-Ping 2, 3

1 Department of Mathematics, National Tsing Hua University, Hsinchu 30013, Taiwan, ROC
2 Institute of Mathematics, Academic Sinica, Taipei 10617, Taiwan, ROC
3 Department of Mathematics, Stanford University, CA 94305, USA
@article{AIHPC_2019__36_6_1639_0,
     author = {Jiang, Jin-Cheng and Liu, Tai-Ping},
     title = {Boltzmann collision operator for the infinite range potential: {A} limit problem},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1639--1677},
     publisher = {Elsevier},
     volume = {36},
     number = {6},
     year = {2019},
     doi = {10.1016/j.anihpc.2019.03.001},
     mrnumber = {4002169},
     zbl = {1423.35292},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.03.001/}
}
TY  - JOUR
AU  - Jiang, Jin-Cheng
AU  - Liu, Tai-Ping
TI  - Boltzmann collision operator for the infinite range potential: A limit problem
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1639
EP  - 1677
VL  - 36
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2019.03.001/
DO  - 10.1016/j.anihpc.2019.03.001
LA  - en
ID  - AIHPC_2019__36_6_1639_0
ER  - 
%0 Journal Article
%A Jiang, Jin-Cheng
%A Liu, Tai-Ping
%T Boltzmann collision operator for the infinite range potential: A limit problem
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1639-1677
%V 36
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2019.03.001/
%R 10.1016/j.anihpc.2019.03.001
%G en
%F AIHPC_2019__36_6_1639_0
Jiang, Jin-Cheng; Liu, Tai-Ping. Boltzmann collision operator for the infinite range potential: A limit problem. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 6, pp. 1639-1677. doi : 10.1016/j.anihpc.2019.03.001. http://www.numdam.org/articles/10.1016/j.anihpc.2019.03.001/

[1] Alexandre, R.; Villani, C. On the Boltzmann equation for long range interactions, Commun. Pure Appl. Math., Volume 1 (2002), pp. 30–70 | MR | Zbl

[2] Alexandre, R.; Morimoto, Y.; Ukai, S.; Xu, C.-J.; Yang, T. Regularizing effect and local existence for non-cutoff Boltzmann equation, Arch. Ration. Mech. Anal., Volume 198 (2010), pp. 39–123 | DOI | MR | Zbl

[3] Alexandre, R.; Morimoto, Y.; Ukai, S.; Xu, C.-J.; Yang, T. The Boltzmann equation without angular cutoff in the whole space: qualitative properties of solutions, Arch. Ration. Mech. Anal., Volume 202 (2011), pp. 599–661 | DOI | MR | Zbl

[4] Bates, S.; Weinstein, A. Lectures on the Geometry of Quantization, Berkeley Mathematics Lecture Notes, Amer. Math. Soc., Providence, RI, 1997 | MR | Zbl

[5] Boltzmann, L. Vorlesungen über Gastheorie 2 Vols, Barth, Leipzig (1896), pp. 98 ([English translation by S.G. Brush: Lectures on Gas Theory, University of California Press, Berkeley, CA, 1964]) | MR

[6] Cercigain, C. On Boltzmann equation with cutoff potentials, Phys. Fluids, Volume 10 (1967) no. 2097, pp. 2104

[7] Cercignani, C. The Boltzmann Equation and Its Applications, Applied Mathematical Series, vol. 67, Springer-Verlag, New York, 1988 | DOI | Zbl

[8] Chen, Y.; He, L. Smoothing estimates for Boltzmann equation with full-range interactions: spatially homogeneous case, Arch. Ration. Mech. Anal., Volume 201 (2011), pp. 501–548 | DOI | MR | Zbl

[9] Grad, H.; Flügge, S. Principles of the kinetic theory of gases, Handbuch der Physik, Band XII, Springer-Verlag, Berlin, 1958, pp. 205–294 | MR

[10] Gressman, P.; Strain, R. Sharp anisotropic estimates for the Boltzmann collision operator and its entropy production, Adv. Math., Volume 227 (2011), pp. 2349–2384 | DOI | MR | Zbl

[11] Harris, S. An Introduction to the Theory of the Boltzmann Equation, Dover, New York, 2011

[12] He, L.-B. Sharp bounds for Boltzmann and Landau collision operators, Ann. Sci. Éc. Norm. Supér., Volume 51 (2018) no. 4, pp. 1285–1373 | MR | Zbl

[13] Hörmander, L. The Analysis of Linear Partial Differential Operators I, Springer, Berlin, 1983 | MR | Zbl

[14] Halmos, P.R.; Sunder, V.S. Bounded Integral Operators and L2 Spaces, Ergebnisse der Mathematik und Ihrer Grenzgebiete, vol. 96, Springer-Verlag, Berlin, 1978 | DOI | MR | Zbl

[15] Jiang, J.-C. Smoothing property of gain part of Boltzmann collision operator, SIAM J. Math. Anal., Volume 44 (2012) no. 3, pp. 1522–1543 | MR | Zbl

[16] Kumano-go, H. Pseudo-Differential Operators, MIT Press, 1981 | MR | Zbl

[17] Lions, P.-L. Compactness in Boltzmann's equation via Fourier integral operators and applications. I, II, J. Math. Kyoto Univ., Volume 34 (1994) no. 2, pp. 391–427 (429–461) | MR | Zbl

[18] Maxwell, J.C. On the dynamical theory of gases, Philos. Trans. R. Soc., Volume 157 (1867), pp. 49–88 [Reprint in: S.G. Brush (Ed.), Kinetic Theory, vol. 2, Irreversible Processes, Pergamon, Oxford, 1966, pp. 23–87]

[19] Ruzhansky, M.; Sugimoto, M. Global L2 boundness theorems for a class of Fourier integral operators, Commun. Partial Differ. Equ., Volume 31 (2006), pp. 547–569 | DOI | MR | Zbl

[20] Ruzhansky, M.; Sugimoto, M. Weighted Sobolev L 2 estimates for a class of Fourier integral operators, Math. Nachr., Volume 284 (2011), pp. 1715–1738 | DOI | MR | Zbl

[21] Sogge, C.D. Fourier Integrals in Classical Analysis, Cambridge Tracts in Mathematics, vol. 105, Cambridge University Press, Cambridge, 1993 | DOI | MR | Zbl

[22] Sone, Y. Derivation of the Boltzmann equation I: finite range potentials, Bull. Inst. Math. Acad. Sin. (N.S.) (2019) (in press)

[23] Sone, Y. Derivation of the Boltzmann equation II: infinite range potentials, Bull. Inst. Math. Acad. Sin. (N.S.) (2019) (in press)

[24] Stein, E.M. Harmonic Analysis: Real Variables Methods, Orthogonality, and Oscillatory Integrals, Princeton University Press, Princeton, 1993 | MR | Zbl

[25] Treves, F. Introduction to Pseudodifferential and Fourier Integral Operators. Vol. I: Pseudodifferential Operators, Fourier Integral Operators, vol. 2, Plenum Press, New York and London, 1980 | MR | Zbl

Cité par Sources :