We studied the asymptotic behavior of local solutions for strongly coupled critical elliptic systems near an isolated singularity. For the dimension less than or equal to five we prove that any singular solution is asymptotic to a rotationally symmetric Fowler type solution. This result generalizes the celebrated work due to Caffarelli, Gidas and Spruck [1] who studied asymptotic proprieties to the classic Yamabe equation. In addition, we generalize similar results by Marques [12] for inhomogeneous context, that is, when the metric is not necessarily conformally flat.
Mots-clés : Critical equations, Elliptic systems, Asymptotic symmetry, Singular solution, A priori estimate
@article{AIHPC_2019__36_6_1575_0, author = {Caju, Rayssa and do \'O, Jo\~ao Marcos and Santos, Almir Silva}, title = {Qualitative properties of positive singular solutions to nonlinear elliptic systems with critical exponent}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1575--1601}, publisher = {Elsevier}, volume = {36}, number = {6}, year = {2019}, doi = {10.1016/j.anihpc.2019.02.001}, mrnumber = {4002167}, zbl = {1425.35039}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.02.001/} }
TY - JOUR AU - Caju, Rayssa AU - do Ó, João Marcos AU - Santos, Almir Silva TI - Qualitative properties of positive singular solutions to nonlinear elliptic systems with critical exponent JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 1575 EP - 1601 VL - 36 IS - 6 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2019.02.001/ DO - 10.1016/j.anihpc.2019.02.001 LA - en ID - AIHPC_2019__36_6_1575_0 ER -
%0 Journal Article %A Caju, Rayssa %A do Ó, João Marcos %A Santos, Almir Silva %T Qualitative properties of positive singular solutions to nonlinear elliptic systems with critical exponent %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 1575-1601 %V 36 %N 6 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2019.02.001/ %R 10.1016/j.anihpc.2019.02.001 %G en %F AIHPC_2019__36_6_1575_0
Caju, Rayssa; do Ó, João Marcos; Santos, Almir Silva. Qualitative properties of positive singular solutions to nonlinear elliptic systems with critical exponent. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 6, pp. 1575-1601. doi : 10.1016/j.anihpc.2019.02.001. http://www.numdam.org/articles/10.1016/j.anihpc.2019.02.001/
[1] Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth, Commun. Pure Appl. Math., Volume 42 (1989), pp. 271–297 | DOI | MR | Zbl
[2] Estimates of the conformal scalar curvature equation via the method of moving planes, Commun. Pure Appl. Math., Volume 50 (1997), pp. 971–1017 | MR | Zbl
[3] Estimate of the conformal scalar curvature equation via the method of moving planes II, J. Differ. Geom., Volume 49 (1998), pp. 115–178 | MR | Zbl
[4] On the asymptotic symmetry of singular solutions of the scalar curvature equations, Math. Ann., Volume 313 (1999), pp. 229–245 | MR | Zbl
[5] Local behavior of singular positive solutions of semilinear elliptic equations with Sobolev exponent, Duke Math. J., Volume 78 (1995), pp. 315–334 | MR | Zbl
[6] Removable singularity of positive solutions for a critical elliptic system with isolated singularity, Math. Ann., Volume 363 (2015), pp. 501–523 | DOI | MR | Zbl
[7] Stability for strongly coupled critical elliptic systems in a fully inhomogeneous medium, Anal. PDE, Volume 2 (2009), pp. 305–359 | DOI | MR | Zbl
[8] Bounded stability for strongly coupled critical elliptic systems below the geometric threshold of the conformal Laplacian, J. Funct. Anal., Volume 258 (2010), pp. 999–1059 | DOI | MR | Zbl
[9] Refined asymptotics for constant scalar curvature metrics with isolated singularities, Invent. Math., Volume 135 (1999), pp. 233–272 | DOI | MR | Zbl
[10] Estimates of the scalar curvature equation via the method of moving planes. III, Commun. Pure Appl. Math., Volume 53 (2000), pp. 611–646 | MR | Zbl
[11] A priori estimates for the Yamabe problem in the non-locally conformally flat case, J. Differ. Geom., Volume 71 (2005) no. 2, pp. 315–346 | DOI | MR | Zbl
[12] Isolated singularities of solutions to the Yamabe equation, Calc. Var. Partial Differ. Equ., Volume 32 (2008), pp. 349–371 | DOI | MR | Zbl
[13] Constant scalar curvature metrics with isolated singularities, Duke Math. J., Volume 99 (1999), pp. 353–418 | DOI | MR | Zbl
[14] Moduli spaces of singular Yamabe metrics, J. Am. Math. Soc., Volume 9 (1996), pp. 303–344 | DOI | MR | Zbl
[15] Methods of Modern Mathematical Physics. IV. Analysis of Operators, 1978 (New York-London) | MR | Zbl
Cité par Sources :