Spreading in space–time periodic media governed by a monostable equation with free boundaries, Part 2: Spreading speed
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 6, pp. 1539-1573.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

This is Part 2 of our work aimed at classifying the long-time behavior of the solution to a free boundary problem with monostable reaction term in space–time periodic media. In Part 1 (see [2]) we have established a theory on the existence and uniqueness of solutions to this free boundary problem with continuous initial functions, as well as a spreading-vanishing dichotomy. We are now able to develop the methods of Weinberger [15, 16] and others [6–10] to prove the existence of asymptotic spreading speed when spreading happens, without knowing a priori the existence of the corresponding semi-wave solutions of the free boundary problem. This is a completely different approach from earlier works on the free boundary model, where the spreading speed is determined by firstly showing the existence of a corresponding semi-wave. Such a semi-wave appears difficult to obtain by the earlier approaches in the case of space–time periodic media considered in our work here.

DOI : 10.1016/j.anihpc.2019.01.005
Classification : 35K20, 35R35, 35J60, 92B05
Mots-clés : Free boundary, Space–time periodic media, Monostable equation, Spreading speed
Ding, Weiwei 1, 2 ; Du, Yihong 1 ; Liang, Xing 3

1 School of Science and Technology, University of New England, Armidale, NSW 2351, Australia
2 Meiji Institute for Advanced Study of Mathematical Sciences, Meiji University, Tokyo 164-8525, Japan
3 School of Mathematical Sciences and Wu Wen-Tsun Key Laboratory of Mathematics, University of Science and Technology of China, Hefei, Anhui, 230026, PR China
@article{AIHPC_2019__36_6_1539_0,
     author = {Ding, Weiwei and Du, Yihong and Liang, Xing},
     title = {Spreading in space{\textendash}time periodic media governed by a monostable equation with free boundaries, {Part} 2: {Spreading} speed},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1539--1573},
     publisher = {Elsevier},
     volume = {36},
     number = {6},
     year = {2019},
     doi = {10.1016/j.anihpc.2019.01.005},
     mrnumber = {4002166},
     zbl = {1421.35191},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.005/}
}
TY  - JOUR
AU  - Ding, Weiwei
AU  - Du, Yihong
AU  - Liang, Xing
TI  - Spreading in space–time periodic media governed by a monostable equation with free boundaries, Part 2: Spreading speed
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1539
EP  - 1573
VL  - 36
IS  - 6
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.005/
DO  - 10.1016/j.anihpc.2019.01.005
LA  - en
ID  - AIHPC_2019__36_6_1539_0
ER  - 
%0 Journal Article
%A Ding, Weiwei
%A Du, Yihong
%A Liang, Xing
%T Spreading in space–time periodic media governed by a monostable equation with free boundaries, Part 2: Spreading speed
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1539-1573
%V 36
%N 6
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.005/
%R 10.1016/j.anihpc.2019.01.005
%G en
%F AIHPC_2019__36_6_1539_0
Ding, Weiwei; Du, Yihong; Liang, Xing. Spreading in space–time periodic media governed by a monostable equation with free boundaries, Part 2: Spreading speed. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 6, pp. 1539-1573. doi : 10.1016/j.anihpc.2019.01.005. http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.005/

[1] Bunting, G.; Du, Y.; Krakowski, K. Special Issue Dedicated to H. Matano, Netw. Heterog. Media, Volume 7 (2012), pp. 583–603 | DOI | MR | Zbl

[2] Ding, W.; Du, Y.; Liang, X. Spreading in space–time periodic media governed by a monostable equation with free boundaries, Part 1: Continuous initial functions, J. Differ. Equ., Volume 262 (2017), pp. 4988–5021 | DOI | MR | Zbl

[3] Du, Y.; Guo, Z. The Stefan problem for the Fisher–KPP equation, J. Differ. Equ., Volume 253 (2012), pp. 996–1035 | MR | Zbl

[4] Du, Y.; Lin, Z. Spreading-vanishing dichotomy in the diffusive logistic model with a free boundary, SIAM J. Math. Anal., Volume 42 (2010), pp. 377–405 | MR | Zbl

[5] Du, Y.; Matano, H. Convergence and sharp thresholds for propagation in nonlinear diffusion problems, J. Eur. Math. Soc., Volume 12 (2010), pp. 279–312 | MR | Zbl

[6] Fang, J.; Yu, X.; Zhao, X.-Q. Traveling waves and spreading speeds for time–space periodic monotone systems, J. Funct. Anal., Volume 272 (2017), pp. 4222–4262 | DOI | MR | Zbl

[7] Liang, X.; Yi, Y.; Zhao, X.-Q. Spreading speeds and traveling waves for periodic evolution systems, J. Differ. Equ., Volume 231 (2006), pp. 57–77 | DOI | MR | Zbl

[8] Liang, X.; Zhao, X.-Q. Asymptotic speeds of spread and traveling waves for monotone semiflows with applications, Commun. Pure Appl. Math., Volume 60 (2007), pp. 1–40 | DOI | MR | Zbl

[9] Liang, X.; Zhao, X.-Q. Spreading speeds and traveling waves for abstract monostable evolution systems, J. Funct. Anal., Volume 259 (2010), pp. 857–903 | DOI | MR | Zbl

[10] Lui, R. Biological growth and spread modeled by systems of recursions, I. Mathematical theory, Math. Biosci., Volume 93 (1989), pp. 269–295 | MR | Zbl

[11] Nadin, G. The principal eigenvalue of a space–time periodic parabolic operator, Ann. Mat. Pura Appl., Volume 188 (2009), pp. 269–295 | DOI | MR | Zbl

[12] Nadin, G. Traveling fronts in space–time periodic media, J. Math. Pures Appl., Volume 92 (2009), pp. 232–262 | DOI | MR | Zbl

[13] Nadin, G. Existence and uniqueness of the solutions of a space–time periodic reaction–diffusion equation, J. Differ. Equ., Volume 249 (2010), pp. 1288–1304 | DOI | MR | Zbl

[14] Sun, N. Asymptotic behavior of solutions of a degenerate Fisher–KPP equation with free boundaries, Nonlinear Anal., Real World Appl., Volume 24 (2015), pp. 98–107 | MR | Zbl

[15] Weinberger, H.F. Long-time behavior of a class of biological models, SIAM J. Math. Anal., Volume 13 (1982), pp. 353–396 | DOI | MR | Zbl

[16] Weinberger, H.F. On spreading speeds and traveling waves for growth and migration models in a periodic habitat, J. Math. Biol., Volume 45 (2002), pp. 511–548 | DOI | MR | Zbl

Cité par Sources :