Well posedness of nonlinear parabolic systems beyond duality
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1467-1500.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We develop a methodology for proving well-posedness in optimal regularity spaces for a wide class of nonlinear parabolic initial–boundary value systems, where the standard monotone operator theory fails. A motivational example of a problem accessible to our technique is the following system

tudiv(ν(|u|)u)=divf
with a given strictly positive bounded function ν, such that limkν(k)=ν and fLq with q(1,). The existence, uniqueness and regularity results for q2 are by now standard. However, even if a priori estimates are available, the existence in case q(1,2) was essentially missing. We overcome the related crucial difficulty, namely the lack of a standard duality pairing, by resorting to proper weighted spaces and consequently provide existence, uniqueness and optimal regularity in the entire range q(1,).

Furthermore, our paper includes several new results that may be of independent interest and serve as the starting point for further analysis of more complicated problems. They include a parabolic Lipschitz approximation method in weighted spaces with fine control of the time derivative and a theory for linear parabolic systems with right hand sides belonging to Muckenhoupt weighted Lq spaces.

DOI : 10.1016/j.anihpc.2019.01.004
Classification : 35D99, 35K51, 35K61, 35A01, 35A02
Mots-clés : Nonlinear parabolic systems, Weighted estimates, Existence, Uniqueness, Very weak solution, Parabolic Lipschitz approximation, Muckenhoupt weights
Bulíček, Miroslav 1 ; Burczak, Jan 2, 3 ; Schwarzacher, Sebastian 4

1 Mathematical Institute, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Prague, Czech Republic
2 Mathematical Institute, University of Oxford, UK
3 Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw, Poland
4 Department of Mathematical Analysis, Faculty of Mathematics and Physics, Charles University, Sokolovská 83, 186 75 Prague, Czech Republic
@article{AIHPC_2019__36_5_1467_0,
     author = {Bul{\'\i}\v{c}ek, Miroslav and Burczak, Jan and Schwarzacher, Sebastian},
     title = {Well posedness of nonlinear parabolic systems beyond duality},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1467--1500},
     publisher = {Elsevier},
     volume = {36},
     number = {5},
     year = {2019},
     doi = {10.1016/j.anihpc.2019.01.004},
     mrnumber = {3985550},
     zbl = {1435.35195},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.004/}
}
TY  - JOUR
AU  - Bulíček, Miroslav
AU  - Burczak, Jan
AU  - Schwarzacher, Sebastian
TI  - Well posedness of nonlinear parabolic systems beyond duality
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1467
EP  - 1500
VL  - 36
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.004/
DO  - 10.1016/j.anihpc.2019.01.004
LA  - en
ID  - AIHPC_2019__36_5_1467_0
ER  - 
%0 Journal Article
%A Bulíček, Miroslav
%A Burczak, Jan
%A Schwarzacher, Sebastian
%T Well posedness of nonlinear parabolic systems beyond duality
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1467-1500
%V 36
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.004/
%R 10.1016/j.anihpc.2019.01.004
%G en
%F AIHPC_2019__36_5_1467_0
Bulíček, Miroslav; Burczak, Jan; Schwarzacher, Sebastian. Well posedness of nonlinear parabolic systems beyond duality. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1467-1500. doi : 10.1016/j.anihpc.2019.01.004. http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.004/

[1] Acerbi, E.; Fusco, N. Semicontinuity problems in the calculus of variations, Arch. Ration. Mech. Anal., Volume 86 (1984) no. 2, pp. 125–145 | DOI | MR | Zbl

[2] Acerbi, E.; Mingione, G. Gradient estimates for a class of parabolic systems, Duke Math. J., Volume 136 (2007) no. 2, pp. 285–320 | DOI | MR | Zbl

[3] Ball, J.M.; Murat, F. Remarks on Chacon's biting lemma, Proc. Am. Math. Soc., Volume 107 (1989) no. 3, pp. 655–663 | MR | Zbl

[4] Blanchard, Dominique; Murat, François Renormalised solutions of nonlinear parabolic problems with L 1 data: existence and uniqueness, Proc. R. Soc. Edinb., Sect. A, Math., Volume 127 (1997) no. 6, pp. 1137–1152 | MR | Zbl

[5] Blanchard, Dominique; Murat, François; Redwane, Hicham Existence and uniqueness of a renormalized solution for a fairly general class of nonlinear parabolic problems, J. Differ. Equ., Volume 177 (2001) no. 2, pp. 331–374 | MR | Zbl

[6] Boccardo, Lucio; Dall'Aglio, Andrea; Gallouët, Thierry; Orsina, Luigi Nonlinear parabolic equations with measure data, J. Funct. Anal., Volume 147 (1997) no. 1, pp. 237–258 | MR | Zbl

[7] Boccardo, Lucio; Gallouët, Thierry Non-linear elliptic and parabolic equations involving measure data, J. Funct. Anal., Volume 87 (1989) no. 1, pp. 149–169 | MR | Zbl

[8] Bögelein, Verena Global Calderón–Zygmund theory for nonlinear parabolic systems, Calc. Var. Partial Differ. Equ., Volume 51 (2014) no. 3–4, pp. 555–596 | MR | Zbl

[9] Bögelein, Verena; Duzaar, Frank; Mingione, Giuseppe The regularity of general parabolic systems with degenerate diffusion, vol. 221, American Mathematical Soc., 2013 | MR | Zbl

[10] Breit, D.; Diening, L.; Schwarzacher, S. Solenoidal Lipschitz truncation for parabolic PDEs, Math. Models Methods Appl. Sci., Volume 53 (2013) no. 14, pp. 2671–2700 | DOI | MR | Zbl

[11] Brézis, Haïm; Friedman, Avner Nonlinear parabolic equations involving measures as initial conditions, J. Math. Pures Appl. (9), Volume 62 (1983) no. 1, pp. 73–97 | MR | Zbl

[12] Bulicek, Miroslav; Gwiazda, Piotr; Málek, Josef; Swierczewska-Gwiazda, Agnieszka On unsteady flows of implicitly constituted incompressible fluids, SIAM J. Math. Anal., Volume 44 (2012) no. 4, pp. 2756–2801 | MR | Zbl

[13] Bulíček, M.; Burczak, J.; Schwarzacher, S. A unified theory for some non Newtonian fluids under singular forcing, SIAM J. Math. Anal., Volume 48 (2016) no. 6, pp. 4241–4267 | DOI | MR | Zbl

[14] Bulíček, M.; Diening, L.; Schwarzacher, S. Existence, uniqueness and optimal regularity results for very weak solutions to nonlinear elliptic systems, Analysis & PDEs, Volume 9 (2016) no. 5, pp. 1115–1151 | MR | Zbl

[15] Bulíček, M.; Schwarzacher, S. Existence of very weak solutions to elliptic systems of p -Laplacian type, Calc. Var. Partial Differ. Equ., Volume 55 (2016) no. 3 | DOI | MR | Zbl

[16] Burczak, Jan L a priori bounds for gradients of solutions to quasilinear inhomogeneous fast-growing parabolic systems, J. Math. Anal. Appl., Volume 393 (2012) no. 1, pp. 222–230 | MR | Zbl

[17] Byun, S.-S. Parabolic equations with BMO coefficients in Lipschitz domains, J. Differ. Equ., Volume 209 (2005) no. 2, pp. 229–265 | MR | Zbl

[18] Byun, Sun-Sig; Ok, Jihoon; Palagachev, Dian K.; Softova, Lubomira G. Parabolic systems with measurable coefficients in weighted Orlicz spaces, Commun. Contemp. Math., Volume 18 (2016) no. 2 | MR | Zbl

[19] Casas, Eduardo Pontryagin's principle for state-constrained boundary control problems of semilinear parabolic equations, SIAM J. Control Optim., Volume 35 (1997) no. 4, pp. 1297–1327 | MR | Zbl

[20] DiBenedetto, E. Degenerate Parabolic Equations, Springer-Verlag, New York, 1993 | DOI | MR | Zbl

[21] DiBenedetto, E.; Friedman, A. Hölder estimates for nonlinear degenerate parabolic systems, J. Reine Angew. Math., Volume 357 (1985), pp. 1–22 | MR | Zbl

[22] Diening, L.; Růžička, M.; Wolf, J. Existence of weak solutions for unsteady motions of generalized Newtonian fluids, Ann. Sc. Norm. Super. Pisa, Cl. Sci. (5), Volume 9 (2010) no. 1, pp. 1–46 | Numdam | MR | Zbl

[23] Diening, L.; Schwarzacher, S.; Stroffolini, B.; Verde, A. Parabolic Lipschitz truncation and caloric approximation, Calc. Var. Partial Differ. Equ., Volume 56 (2017) no. 4 | DOI | MR | Zbl

[24] Kinnunen, J.; Lewis, J.L. Higher integrability for parabolic systems of p -Laplacian type, Duke Math. J., Volume 102 (2000) no. 2, pp. 253–271 | DOI | MR | Zbl

[25] Kinnunen, J.; Lewis, J.L. Very weak solutions of parabolic systems of p -Laplacian type, Ark. Mat., Volume 40 (2002) no. 1, pp. 105–132 | DOI | MR | Zbl

[26] Ladyzhenskaia, Olga Aleksandrovna; Solonnikov, Vsevolod Alekseevich; Ural'ceva, Nina N. Linear and Quasi-linear Equations of Parabolic Type, vol. 123, American Mathematical Soc., 1968

[27] Lewis, John L. On very weak solutions of certain elliptic systems, Commun. Partial Differ. Equ., Volume 18 (1993) no. 9–10, pp. 1515–1537 | MR | Zbl

[28] Misawa, Masashi Local Hölder regularity of gradients for evolutional p -Laplacian systems, Ann. Mat. Pura Appl. (4), Volume 181 (2002) no. 4, pp. 389–405 | MR | Zbl

[29] Muckenhoupt, B. Weighted norm inequalities for the Hardy maximal function, Trans. Am. Math. Soc., Volume 165 (1972), pp. 207–226 | DOI | MR | Zbl

[30] Schwarzacher, Sebastian Hölder–Zygmund estimates for degenerate parabolic systems, J. Differ. Equ., Volume 256 (2014), pp. 2423–2448 | MR | Zbl

[31] Stein, E.M. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Monographs in Harmonic Analysis, vol. III, Princeton University Press, Princeton, NJ, 1993 (With the assistance of Timothy S. Murphy) | MR | Zbl

[32] Torchinsky, A. Real-Variable Methods in Harmonic Analysis , Pure and Applied Mathematics, vol. 123, Academic Press, Inc., Orlando, FL, 1986 | MR | Zbl

[33] Turesson, B.O. Nonlinear Potential Theory and Weighted Sobolev Spaces , Lecture Notes in Mathematics, vol. 1736, Springer-Verlag, Berlin, 2000 | DOI | MR | Zbl

Cité par Sources :