Parabolic equation in time and space dependent anisotropic Musielak–Orlicz spaces in absence of Lavrentiev's phenomenon
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1431-1465.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We study a general nonlinear parabolic equation on a Lipschitz bounded domain in RN,

{tudivA(t,x,u)=f(t,x)inΩT,u(t,x)=0on(0,T)×Ω,u(0,x)=u0(x)inΩ,
with fL(ΩT) and u0L(Ω). The growth of the monotone vector field A is controlled by a generalized fully anisotropic N-function M:[0,T)×Ω×RN[0,) inhomogeneous in time and space, and under no growth restrictions on the last variable. It results in the need of the integration by parts formula which has to be formulated in an advanced way. Existence and uniqueness of solutions are proven when the Musielak–Orlicz space is reflexive OR in absence of Lavrentiev's phenomenon. To ensure approximation properties of the space we impose natural assumption that the asymptotic behaviour of the modular function is sufficiently balanced. Its instances are log-Hölder continuity of variable exponent or optimal closeness condition for powers in double phase spaces.

The noticeable challenge of this paper is considering the problem in non-reflexive and inhomogeneous fully anisotropic space that changes along time.

DOI : 10.1016/j.anihpc.2019.01.003
Classification : 35K55, 35A01
Mots-clés : Existence of solutions, Musielak–Orlicz spaces, Parabolic problems
Chlebicka, Iwona 1, 2 ; Gwiazda, Piotr 1 ; Zatorska–Goldstein, Anna 2

1 Institute of Mathematics, Polish Academy of Sciences, ul. Śniadeckich 8, 00-656 Warsaw, Poland
2 Institute of Applied Mathematics and Mechanics, University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland
@article{AIHPC_2019__36_5_1431_0,
     author = {Chlebicka, Iwona and Gwiazda, Piotr and Zatorska{\textendash}Goldstein, Anna},
     title = {Parabolic equation in time and space dependent anisotropic {Musielak{\textendash}Orlicz} spaces in absence of {Lavrentiev's} phenomenon},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1431--1465},
     publisher = {Elsevier},
     volume = {36},
     number = {5},
     year = {2019},
     doi = {10.1016/j.anihpc.2019.01.003},
     mrnumber = {3985549},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.003/}
}
TY  - JOUR
AU  - Chlebicka, Iwona
AU  - Gwiazda, Piotr
AU  - Zatorska–Goldstein, Anna
TI  - Parabolic equation in time and space dependent anisotropic Musielak–Orlicz spaces in absence of Lavrentiev's phenomenon
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1431
EP  - 1465
VL  - 36
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.003/
DO  - 10.1016/j.anihpc.2019.01.003
LA  - en
ID  - AIHPC_2019__36_5_1431_0
ER  - 
%0 Journal Article
%A Chlebicka, Iwona
%A Gwiazda, Piotr
%A Zatorska–Goldstein, Anna
%T Parabolic equation in time and space dependent anisotropic Musielak–Orlicz spaces in absence of Lavrentiev's phenomenon
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1431-1465
%V 36
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.003/
%R 10.1016/j.anihpc.2019.01.003
%G en
%F AIHPC_2019__36_5_1431_0
Chlebicka, Iwona; Gwiazda, Piotr; Zatorska–Goldstein, Anna. Parabolic equation in time and space dependent anisotropic Musielak–Orlicz spaces in absence of Lavrentiev's phenomenon. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1431-1465. doi : 10.1016/j.anihpc.2019.01.003. http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.003/

[1] Ahmida, Y.; Chlebicka, I.; Gwiazda, P.; Youssfi, A. Gossez's approximation theorems in the Musielak–Orlicz–Sobolev spaces, J. Funct. Anal., Volume 275 (2018) no. 9, pp. 2538–2571 | DOI | MR

[2] Alberico, A. Boundedness of solutions to anisotropic variational problems, Commun. Partial Differ. Equ., Volume 36 (2011) no. 3, pp. 470–486 | DOI | MR | Zbl

[3] A. Alberico, I. Chlebicka, A. Cianchi, A. Zatorska-Goldstein, Fully anisotropic elliptic problem with minimally integrable data, preprint, 2018. | MR

[4] Alberico, A.; Cianchi, A. Comparison estimates in anisotropic variational problems, Manuscr. Math., Volume 126 (2008) no. 4, pp. 481–503 | DOI | MR | Zbl

[5] Alberico, A.; di Blasio, G.; Feo, F. Comparison results for nonlinear anisotropic parabolic problems, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., Volume 28 (2017) no. 2, pp. 305–322 | MR

[6] Barletta, G.; Cianchi, A. Dirichlet problems for fully anisotropic elliptic equations, Proc. R. Soc. Edinb., Sect. A, Volume 147 (2017) no. 1, pp. 25–60 | DOI | MR

[7] Baroni, P.; Colombo, M.; Mingione, G. Nonautonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., Volume 27 (2016) no. 3, pp. 347–379 | DOI | MR

[8] Baroni, P.; Colombo, M.; Mingione, G. Regularity for general functionals with double phase, Calc. Var. Partial Differ. Equ., Volume 57 (2018) no. 2, pp. 57–62 | DOI | MR

[9] Bögelein, V.; Duzaar, F.; Marcellini, P.; Scheven, C. A variational approach to porous medium type equation, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., Volume 29 (2018) no. 4, pp. 739–772 | MR

[10] Bögelein, V.; Duzaar, F.; Marcellini, P.; Scheven, C. Doubly nonlinear equations of porous medium type, Arch. Ration. Mech. Anal., Volume 229 (2018) no. 2, pp. 503–545 | DOI | MR

[11] Chlebicka, I. A pocket guide to nonlinear differential equations in Musielak–Orlicz spaces, Nonlinear Anal., Volume 175 (2018), pp. 1–27 | DOI | MR

[12] Chlebicka, I.; Giannetti, F.; Zatorska-Goldstein, A. Elliptic problems in nonreflexive Orlicz spaces with measure or L1 data, 2018 (submitted for publication) | arXiv | MR

[13] I. Chlebicka, P. Gwiazda, A. Wróblewska-Kamińska, Świerczewska-Gwiazda, Partial differential equations in anisotropic Musielak–Orlicz spaces, manuscript, 2019. | MR

[14] Chlebicka, I.; Gwiazda, P.; Zatorska-Goldstein, A. Well-posedness of parabolic equations in the non-reflexive and anisotropic Musielak–Orlicz spaces in the class of renormalized solutions, J. Differ. Equ., Volume 265 (2018) no. 11, pp. 5716–5766 | DOI | MR

[15] Cianchi, A. A fully anisotropic Sobolev inequality, Pac. J. Math., Volume 196 (2000) no. 2, pp. 283–295 | DOI | MR | Zbl

[16] Cianchi, A. Symmetrization in anisotropic elliptic problems, Commun. Partial Differ. Equ., Volume 32 (2007) no. 4–6, pp. 693–717 | MR | Zbl

[17] Colombo, M.; Mingione, G. Regularity for double phase variational problems, Arch. Ration. Mech. Anal., Volume 215 (2015) no. 2, pp. 443–496 | DOI | MR | Zbl

[18] Donaldson, T. Nonlinear elliptic boundary value problems in Orlicz–Sobolev spaces, J. Differ. Equ., Volume 10 (1971), pp. 507–528 | DOI | MR | Zbl

[19] Eleuteri, M.; Marcellini, P.; Mascolo, E. Lipschitz continuity for energy integrals with variable exponents, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., Volume 27 (2016) no. 1, pp. 61–87 | MR

[20] Eleuteri, M.; Marcellini, P.; Mascolo, E. Regularity for scalar integrals without structure conditions, Adv. Calc. Var. (2018) | MR

[21] Elmahi, A.; Meskine, D. Parabolic equations in Orlicz spaces, J. Lond. Math. Soc. (2), Volume 72 (2005) no. 2, pp. 410–428 | DOI | MR | Zbl

[22] Elmahi, A.; Meskine, D. Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces, Nonlinear Anal., Volume 60 (2005) no. 1, pp. 1–35 | DOI | MR | Zbl

[23] Esposito, L.; Leonetti, F.; Mingione, G. Sharp regularity for functionals with (p,q) growth, J. Differ. Equ., Volume 204 (2004) no. 1, pp. 5–55 | DOI | MR | Zbl

[24] Gajewski, H.; Gröger, K.; Zacharias, K. Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Mathematische Lehrbücher und Monographien, II. Abteilung, Mathematische Monographien, Band 38, Akademie-Verlag, Berlin, 1974 | MR | Zbl

[25] Gossez, J.-P. Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Am. Math. Soc., Volume 190 (1974), pp. 163–205 | MR | Zbl

[26] Gossez, J.-P. Nonlinear Analysis, Function Spaces and Applications, Orlicz–Sobolev spaces and nonlinear elliptic boundary value problems, Teubner, Leipzig (1979), pp. 59–94 (Proc. Spring School, Horni Bradlo, 1978) | MR | Zbl

[27] Gossez, J.-P. Some approximation properties in Orlicz–Sobolev spaces, Stud. Math., Volume 74 (1982) no. 1, pp. 17–24 | MR | Zbl

[28] Gwiazda, P.; Minakowski, P.; Wróblewska-Kamińska, A. Elliptic problems in generalized Orlicz–Musielak spaces, Cent. Eur. J. Math., Volume 10 (2012) no. 6, pp. 2019–2032 | MR | Zbl

[29] Gwiazda, P.; Skrzypczak, I.; Zatorska-Goldstein, A. Existence of renormalized solutions to elliptic equation in Musielak–Orlicz space, J. Differ. Equ., Volume 264 (2018) no. 1, pp. 341–377 | DOI | MR

[30] Gwiazda, P.; Świerczewska-Gwiazda, A. On non-Newtonian fluids with a property of rapid thickening under different stimulus, Math. Models Methods Appl. Sci., Volume 18 (2008) no. 7, pp. 1073–1092 | DOI | MR | Zbl

[31] Gwiazda, P.; Świerczewska-Gwiazda, A. On steady non-Newtonian fluids with growth conditions in generalized Orlicz spaces, Topol. Methods Nonlinear Anal., Volume 32 (2008) no. 1, pp. 103–113 | MR | Zbl

[32] Gwiazda, P.; Świerczewska-Gwiazda, A. Parabolic equations in anisotropic Orlicz spaces with general N-functions, Parabolic Problems, Progr. Nonlinear Differential Equations Appl., vol. 80, Birkhäuser/Springer Basel AG, Basel, 2011, pp. 301–311 | MR | Zbl

[33] Gwiazda, P.; Świerczewska-Gwiazda, A.; Wróblewska, A. Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Math. Methods Appl. Sci., Volume 33 (2010) no. 2, pp. 125–137 | DOI | MR | Zbl

[34] Gwiazda, P.; Wittbold, P.; Wróblewska, A.; Zimmermann, A. Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces, J. Differ. Equ., Volume 253 (2012) no. 2, pp. 635–666 | DOI | MR | Zbl

[35] Gwiazda, P.; Wittbold, P.; Wróblewska-Kamińska, A.; Zimmermann, A. Corrigendum to “Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces”, J. Differ. Equ., Volume 253 (2012) no. 2, pp. 635–666 | DOI | MR | Zbl

[36] Gwiazda, P.; Wittbold, P.; Wróblewska-Kamińska, A.; Zimmermann, A. Renormalized solutions to nonlinear parabolic problems in generalized Musielak–Orlicz spaces, Nonlinear Anal., Volume 129 (2015), pp. 1–36 | DOI | MR

[37] Harjulehto, P.; Hästö, P.; Karppinen, A. Local higher integrability of the gradient of a quasiminimizer under generalized Orlicz growth conditions, Nonlinear Anal., Volume 177 (2018), pp. 543–552 | DOI | MR

[38] Harjulehto, P.; Hästö, P.; Klén, R. Generalized Orlicz spaces and related PDE, Nonlinear Anal., Volume 143 (2016), pp. 155–173 | DOI | MR

[39] Harjulehto, P.; Hästö, P.; Toivanen, O. Hölder regularity of quasiminimizers under generalized growth conditions, Calc. Var. Partial Differ. Equ., Volume 56 (2017), pp. 22 | DOI | MR

[40] P. Harjulehto, P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Lecture Notes in Mathematics, in press. | MR

[41] Lavrentiev, M. Sur quelques problèmes du calcul des variations, Ann. Mat. Pura Appl., Volume 41 (1927), pp. 107–124 | JFM | MR

[42] Le, V.K. On second order elliptic equations and variational inequalities with anisotropic principal operators, Topol. Methods Nonlinear Anal., Volume 44 (2014) no. 1, pp. 41–72 | MR

[43] Maeda, F.-Y.; Mizuta, Y.; Ohno, T.; Shimomura, T. Approximate identities and Young type inequalities in Musielak–Orlicz spaces, Czechoslov. Math. J., Volume 63(138) (2013) no. 4, pp. 933–948 | MR | Zbl

[44] Maeda, F.-Y.; Mizuta, Y.; Ohno, T.; Shimomura, T. Boundedness of maximal operators and Sobolev's inequality on Musielak–Orlicz–Morrey spaces, Bull. Sci. Math., Volume 137 (2013) no. 1, pp. 76–96 | MR | Zbl

[45] Marcellini, P. Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal., Volume 105 (1989) no. 3, pp. 267–284 | DOI | MR | Zbl

[46] Marcellini, P. Regularity and existence of solutions of elliptic equations with p,q-growth conditions, J. Differ. Equ., Volume 90 (1991) no. 1, pp. 1–30 | DOI | MR | Zbl

[47] Musielak, J. Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, 1983 | DOI | MR | Zbl

[48] Mustonen, V.; Tienari, M. On monotone-like mappings in Orlicz–Sobolev spaces, Math. Bohem., Volume 124 (1999) no. 2–3, pp. 255–271 | MR | Zbl

[49] Novotný, A.; Straškraba, I. Introduction to the Mathematical Theory of Compressible Flow, Oxford Lecture Series in Mathematics and its Applications, vol. 27, Oxford University Press, Oxford, 2004 | DOI | MR | Zbl

[50] Skaff, M.S. Vector valued Orlicz spaces generalized N -functions. I, Pac. J. Math., Volume 28 (1969), pp. 193–206 | MR | Zbl

[51] Skaff, M.S. Vector valued Orlicz spaces generalized N -functions. II, Pac. J. Math., Volume 28 (1969), pp. 413–430 | MR | Zbl

[52] Świerczewska-Gwiazda, A. Nonlinear parabolic problems in Musielak–Orlicz spaces, Nonlinear Anal., Volume 98 (2014), pp. 48–65 | DOI | MR | Zbl

[53] Trudinger, N.S. An imbedding theorem for H0(G,Ω) spaces, Stud. Math., Volume 50 (1974), pp. 17–30 | MR | Zbl

[54] Wróblewska, A. Steady flow of non-Newtonian fluids—monotonicity methods in generalized Orlicz spaces, Nonlinear Anal., Volume 72 (2010) no. 11, pp. 4136–4147 | DOI | MR | Zbl

[55] Zhikov, V.V. On Lavrentiev's phenomenon, Russ. J. Math. Phys., Volume 3 (1995) no. 2, pp. 249–269 | MR | Zbl

[56] Zhikov, V.V. On some variational problems, Russ. J. Math. Phys., Volume 5 (1998) no. 1, pp. 105–116 (1997) | MR | Zbl

[57] Zhikov, V.V. On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci. (N.Y.), Volume 173 (2011) no. 5, pp. 463–570 (Problems in Mathematical Analysis, No. 54) | DOI | MR | Zbl

Cité par Sources :