We study a general nonlinear parabolic equation on a Lipschitz bounded domain in ,
The noticeable challenge of this paper is considering the problem in non-reflexive and inhomogeneous fully anisotropic space that changes along time.
Mots-clés : Existence of solutions, Musielak–Orlicz spaces, Parabolic problems
@article{AIHPC_2019__36_5_1431_0, author = {Chlebicka, Iwona and Gwiazda, Piotr and Zatorska{\textendash}Goldstein, Anna}, title = {Parabolic equation in time and space dependent anisotropic {Musielak{\textendash}Orlicz} spaces in absence of {Lavrentiev's} phenomenon}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {1431--1465}, publisher = {Elsevier}, volume = {36}, number = {5}, year = {2019}, doi = {10.1016/j.anihpc.2019.01.003}, mrnumber = {3985549}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.003/} }
TY - JOUR AU - Chlebicka, Iwona AU - Gwiazda, Piotr AU - Zatorska–Goldstein, Anna TI - Parabolic equation in time and space dependent anisotropic Musielak–Orlicz spaces in absence of Lavrentiev's phenomenon JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 1431 EP - 1465 VL - 36 IS - 5 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.003/ DO - 10.1016/j.anihpc.2019.01.003 LA - en ID - AIHPC_2019__36_5_1431_0 ER -
%0 Journal Article %A Chlebicka, Iwona %A Gwiazda, Piotr %A Zatorska–Goldstein, Anna %T Parabolic equation in time and space dependent anisotropic Musielak–Orlicz spaces in absence of Lavrentiev's phenomenon %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 1431-1465 %V 36 %N 5 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.003/ %R 10.1016/j.anihpc.2019.01.003 %G en %F AIHPC_2019__36_5_1431_0
Chlebicka, Iwona; Gwiazda, Piotr; Zatorska–Goldstein, Anna. Parabolic equation in time and space dependent anisotropic Musielak–Orlicz spaces in absence of Lavrentiev's phenomenon. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1431-1465. doi : 10.1016/j.anihpc.2019.01.003. http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.003/
[1] Gossez's approximation theorems in the Musielak–Orlicz–Sobolev spaces, J. Funct. Anal., Volume 275 (2018) no. 9, pp. 2538–2571 | DOI | MR
[2] Boundedness of solutions to anisotropic variational problems, Commun. Partial Differ. Equ., Volume 36 (2011) no. 3, pp. 470–486 | DOI | MR | Zbl
[3] A. Alberico, I. Chlebicka, A. Cianchi, A. Zatorska-Goldstein, Fully anisotropic elliptic problem with minimally integrable data, preprint, 2018. | MR
[4] Comparison estimates in anisotropic variational problems, Manuscr. Math., Volume 126 (2008) no. 4, pp. 481–503 | DOI | MR | Zbl
[5] Comparison results for nonlinear anisotropic parabolic problems, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., Volume 28 (2017) no. 2, pp. 305–322 | MR
[6] Dirichlet problems for fully anisotropic elliptic equations, Proc. R. Soc. Edinb., Sect. A, Volume 147 (2017) no. 1, pp. 25–60 | DOI | MR
[7] Nonautonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., Volume 27 (2016) no. 3, pp. 347–379 | DOI | MR
[8] Regularity for general functionals with double phase, Calc. Var. Partial Differ. Equ., Volume 57 (2018) no. 2, pp. 57–62 | DOI | MR
[9] A variational approach to porous medium type equation, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., Volume 29 (2018) no. 4, pp. 739–772 | MR
[10] Doubly nonlinear equations of porous medium type, Arch. Ration. Mech. Anal., Volume 229 (2018) no. 2, pp. 503–545 | DOI | MR
[11] A pocket guide to nonlinear differential equations in Musielak–Orlicz spaces, Nonlinear Anal., Volume 175 (2018), pp. 1–27 | DOI | MR
[12] Elliptic problems in nonreflexive Orlicz spaces with measure or data, 2018 (submitted for publication) | arXiv | MR
[13] I. Chlebicka, P. Gwiazda, A. Wróblewska-Kamińska, Świerczewska-Gwiazda, Partial differential equations in anisotropic Musielak–Orlicz spaces, manuscript, 2019. | MR
[14] Well-posedness of parabolic equations in the non-reflexive and anisotropic Musielak–Orlicz spaces in the class of renormalized solutions, J. Differ. Equ., Volume 265 (2018) no. 11, pp. 5716–5766 | DOI | MR
[15] A fully anisotropic Sobolev inequality, Pac. J. Math., Volume 196 (2000) no. 2, pp. 283–295 | DOI | MR | Zbl
[16] Symmetrization in anisotropic elliptic problems, Commun. Partial Differ. Equ., Volume 32 (2007) no. 4–6, pp. 693–717 | MR | Zbl
[17] Regularity for double phase variational problems, Arch. Ration. Mech. Anal., Volume 215 (2015) no. 2, pp. 443–496 | DOI | MR | Zbl
[18] Nonlinear elliptic boundary value problems in Orlicz–Sobolev spaces, J. Differ. Equ., Volume 10 (1971), pp. 507–528 | DOI | MR | Zbl
[19] Lipschitz continuity for energy integrals with variable exponents, Atti Accad. Naz. Lincei, Rend. Lincei, Mat. Appl., Volume 27 (2016) no. 1, pp. 61–87 | MR
[20] Regularity for scalar integrals without structure conditions, Adv. Calc. Var. (2018) | MR
[21] Parabolic equations in Orlicz spaces, J. Lond. Math. Soc. (2), Volume 72 (2005) no. 2, pp. 410–428 | DOI | MR | Zbl
[22] Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces, Nonlinear Anal., Volume 60 (2005) no. 1, pp. 1–35 | DOI | MR | Zbl
[23] Sharp regularity for functionals with growth, J. Differ. Equ., Volume 204 (2004) no. 1, pp. 5–55 | DOI | MR | Zbl
[24] Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen, Mathematische Lehrbücher und Monographien, II. Abteilung, Mathematische Monographien, Band 38, Akademie-Verlag, Berlin, 1974 | MR | Zbl
[25] Nonlinear elliptic boundary value problems for equations with rapidly (or slowly) increasing coefficients, Trans. Am. Math. Soc., Volume 190 (1974), pp. 163–205 | MR | Zbl
[26] Nonlinear Analysis, Function Spaces and Applications, Orlicz–Sobolev spaces and nonlinear elliptic boundary value problems, Teubner, Leipzig (1979), pp. 59–94 (Proc. Spring School, Horni Bradlo, 1978) | MR | Zbl
[27] Some approximation properties in Orlicz–Sobolev spaces, Stud. Math., Volume 74 (1982) no. 1, pp. 17–24 | MR | Zbl
[28] Elliptic problems in generalized Orlicz–Musielak spaces, Cent. Eur. J. Math., Volume 10 (2012) no. 6, pp. 2019–2032 | MR | Zbl
[29] Existence of renormalized solutions to elliptic equation in Musielak–Orlicz space, J. Differ. Equ., Volume 264 (2018) no. 1, pp. 341–377 | DOI | MR
[30] On non-Newtonian fluids with a property of rapid thickening under different stimulus, Math. Models Methods Appl. Sci., Volume 18 (2008) no. 7, pp. 1073–1092 | DOI | MR | Zbl
[31] On steady non-Newtonian fluids with growth conditions in generalized Orlicz spaces, Topol. Methods Nonlinear Anal., Volume 32 (2008) no. 1, pp. 103–113 | MR | Zbl
[32] Parabolic equations in anisotropic Orlicz spaces with general N-functions, Parabolic Problems, Progr. Nonlinear Differential Equations Appl., vol. 80, Birkhäuser/Springer Basel AG, Basel, 2011, pp. 301–311 | MR | Zbl
[33] Monotonicity methods in generalized Orlicz spaces for a class of non-Newtonian fluids, Math. Methods Appl. Sci., Volume 33 (2010) no. 2, pp. 125–137 | DOI | MR | Zbl
[34] Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces, J. Differ. Equ., Volume 253 (2012) no. 2, pp. 635–666 | DOI | MR | Zbl
[35] Corrigendum to “Renormalized solutions of nonlinear elliptic problems in generalized Orlicz spaces”, J. Differ. Equ., Volume 253 (2012) no. 2, pp. 635–666 | DOI | MR | Zbl
[36] Renormalized solutions to nonlinear parabolic problems in generalized Musielak–Orlicz spaces, Nonlinear Anal., Volume 129 (2015), pp. 1–36 | DOI | MR
[37] Local higher integrability of the gradient of a quasiminimizer under generalized Orlicz growth conditions, Nonlinear Anal., Volume 177 (2018), pp. 543–552 | DOI | MR
[38] Generalized Orlicz spaces and related PDE, Nonlinear Anal., Volume 143 (2016), pp. 155–173 | DOI | MR
[39] Hölder regularity of quasiminimizers under generalized growth conditions, Calc. Var. Partial Differ. Equ., Volume 56 (2017), pp. 22 | DOI | MR
[40] P. Harjulehto, P. Hästö, Orlicz Spaces and Generalized Orlicz Spaces, Lecture Notes in Mathematics, in press. | MR
[41] Sur quelques problèmes du calcul des variations, Ann. Mat. Pura Appl., Volume 41 (1927), pp. 107–124 | JFM | MR
[42] On second order elliptic equations and variational inequalities with anisotropic principal operators, Topol. Methods Nonlinear Anal., Volume 44 (2014) no. 1, pp. 41–72 | MR
[43] Approximate identities and Young type inequalities in Musielak–Orlicz spaces, Czechoslov. Math. J., Volume 63(138) (2013) no. 4, pp. 933–948 | MR | Zbl
[44] Boundedness of maximal operators and Sobolev's inequality on Musielak–Orlicz–Morrey spaces, Bull. Sci. Math., Volume 137 (2013) no. 1, pp. 76–96 | MR | Zbl
[45] Regularity of minimizers of integrals of the calculus of variations with nonstandard growth conditions, Arch. Ration. Mech. Anal., Volume 105 (1989) no. 3, pp. 267–284 | DOI | MR | Zbl
[46] Regularity and existence of solutions of elliptic equations with -growth conditions, J. Differ. Equ., Volume 90 (1991) no. 1, pp. 1–30 | DOI | MR | Zbl
[47] Orlicz Spaces and Modular Spaces, Lecture Notes in Mathematics, vol. 1034, Springer-Verlag, Berlin, 1983 | DOI | MR | Zbl
[48] On monotone-like mappings in Orlicz–Sobolev spaces, Math. Bohem., Volume 124 (1999) no. 2–3, pp. 255–271 | MR | Zbl
[49] Introduction to the Mathematical Theory of Compressible Flow, Oxford Lecture Series in Mathematics and its Applications, vol. 27, Oxford University Press, Oxford, 2004 | DOI | MR | Zbl
[50] Vector valued Orlicz spaces generalized -functions. I, Pac. J. Math., Volume 28 (1969), pp. 193–206 | MR | Zbl
[51] Vector valued Orlicz spaces generalized -functions. II, Pac. J. Math., Volume 28 (1969), pp. 413–430 | MR | Zbl
[52] Nonlinear parabolic problems in Musielak–Orlicz spaces, Nonlinear Anal., Volume 98 (2014), pp. 48–65 | DOI | MR | Zbl
[53] An imbedding theorem for spaces, Stud. Math., Volume 50 (1974), pp. 17–30 | MR | Zbl
[54] Steady flow of non-Newtonian fluids—monotonicity methods in generalized Orlicz spaces, Nonlinear Anal., Volume 72 (2010) no. 11, pp. 4136–4147 | DOI | MR | Zbl
[55] On Lavrentiev's phenomenon, Russ. J. Math. Phys., Volume 3 (1995) no. 2, pp. 249–269 | MR | Zbl
[56] On some variational problems, Russ. J. Math. Phys., Volume 5 (1998) no. 1, pp. 105–116 (1997) | MR | Zbl
[57] On variational problems and nonlinear elliptic equations with nonstandard growth conditions, J. Math. Sci. (N.Y.), Volume 173 (2011) no. 5, pp. 463–570 (Problems in Mathematical Analysis, No. 54) | DOI | MR | Zbl
Cité par Sources :