Taylor expansions of the value function associated with a bilinear optimal control problem
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1361-1399.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

A general bilinear optimal control problem subject to an infinite-dimensional state equation is considered. Polynomial approximations of the associated value function are derived around the steady state by repeated formal differentiation of the Hamilton–Jacobi–Bellman equation. The terms of the approximations are described by multilinear forms, which can be obtained as solutions to generalized Lyapunov equations with recursively defined right-hand sides. They form the basis for defining a suboptimal feedback law. The approximation properties of this feedback law are investigated. An application to the optimal control of a Fokker–Planck equation is also provided.

DOI : 10.1016/j.anihpc.2019.01.001
Classification : 49J20, 49N35, 93D05, 93D15
Mots-clés : Value function, Hamilton–Jacobi–Bellman equation, Bilinear control systems, Riccati equation, Generalized Lyapunov equations, Fokker–Planck equation
Breiten, Tobias 1 ; Kunisch, Karl 1, 2 ; Pfeiffer, Laurent 1

1 Institute of Mathematics, University of Graz, Austria
2 RICAM Institute, Austrian Academy of Sciences, Linz, Austria
@article{AIHPC_2019__36_5_1361_0,
     author = {Breiten, Tobias and Kunisch, Karl and Pfeiffer, Laurent},
     title = {Taylor expansions of the value function associated with a bilinear optimal control problem},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1361--1399},
     publisher = {Elsevier},
     volume = {36},
     number = {5},
     year = {2019},
     doi = {10.1016/j.anihpc.2019.01.001},
     mrnumber = {3985547},
     zbl = {1420.49005},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.001/}
}
TY  - JOUR
AU  - Breiten, Tobias
AU  - Kunisch, Karl
AU  - Pfeiffer, Laurent
TI  - Taylor expansions of the value function associated with a bilinear optimal control problem
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1361
EP  - 1399
VL  - 36
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.001/
DO  - 10.1016/j.anihpc.2019.01.001
LA  - en
ID  - AIHPC_2019__36_5_1361_0
ER  - 
%0 Journal Article
%A Breiten, Tobias
%A Kunisch, Karl
%A Pfeiffer, Laurent
%T Taylor expansions of the value function associated with a bilinear optimal control problem
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1361-1399
%V 36
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.001/
%R 10.1016/j.anihpc.2019.01.001
%G en
%F AIHPC_2019__36_5_1361_0
Breiten, Tobias; Kunisch, Karl; Pfeiffer, Laurent. Taylor expansions of the value function associated with a bilinear optimal control problem. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1361-1399. doi : 10.1016/j.anihpc.2019.01.001. http://www.numdam.org/articles/10.1016/j.anihpc.2019.01.001/

[1] Aguilar, C.; Krener, A. Numerical solutions to the Bellman equation of optimal control, J. Optim. Theory Appl., Volume 160 (2014), pp. 527–552 | DOI | MR | Zbl

[2] Al'brekht, E. On the optimal stabilization of nonlinear systems, J. Appl. Math. Mech., Volume 25 (1961), pp. 1254 | DOI | Zbl

[3] Badra, M.; Takahashi, T. Stabilization of parabolic nonlinear systems with finite dimensional feedback or dynamical controllers: application to the Navier–Stokes system, SIAM J. Control Optim., Volume 49 (2011), pp. 420–463 | DOI | MR | Zbl

[4] Barbu, V. Analysis and Control of Nonlinear Infinite-Dimensional Systems, Math. Sci. Eng., vol. 190, Academic Press, Inc., Boston, MA, 1993 | MR | Zbl

[5] Barbu, V.; Da Prato, G. Hamilton–Jacobi Equations in Hilbert Spaces, Res. Notes Math., vol. 86, Pitman (Advanced Publishing Program), Boston, MA, 1983 | MR | Zbl

[6] Bardi, M.; Dolcetta, I.C. Optimal Control and Viscosity Solutions of Hamilton–Jacobi–Bellman Equations, Birkhäuser, Basel, 1997 | DOI | Zbl

[7] Beeler, S.; Tran, H.; Banks, H. Feedback control methodologies for nonlinear systems, J. Optim. Theory Appl., Volume 107 (2000), pp. 1–33 | DOI | MR | Zbl

[8] Bellman, R. Dynamic Programming, Princeton University Press, 1957 | MR | Zbl

[9] Bensoussan, A.; Da Prato, G.; Delfour, M.; Mitter, S. Representation and Control of Infinite Dimensional Systems, Birkhäuser, Boston, Basel, Berlin, 2007 | DOI | MR | Zbl

[10] Breiten, T.; Kunisch, K.; Pfeiffer, L. Control strategies for the Fokker–Planck equation, ESAIM Control Optim. Calc. Var., Volume 24 (2018), pp. 741–763 | DOI | Numdam | MR | Zbl

[11] Breiten, T.; Kunisch, K.; Pfeiffer, L. Numerical study of polynomial feedback laws for a bilinear control problem, Math. Control Relat. Fields, Volume 8 (2018), pp. 557–582 | DOI | MR | Zbl

[12] Cebuhar, W.; Costanza, V. Approximation procedures for the optimal control of bilinear and nonlinear systems, J. Optim. Theory Appl., Volume 43 (1984), pp. 615–627 | DOI | MR | Zbl

[13] Curtain, R.; Zwart, H. An Introduction to Infinite-Dimensional Linear Systems Theory, Springer-Verlag, 2005 | Zbl

[14] Eppler, K.; Tröltzsch, F. Fast Optimization Methods in the Selective Cooling of Steel, Springer Berlin Heidelberg (2001), pp. 185–204 | MR | Zbl

[15] Garrard, W. Suboptimal feedback control for nonlinear systems, Automatica, Volume 8 (1972), pp. 219–221 | DOI | Zbl

[16] Garrard, W.; Enns, D.; Snell, A. Nonlinear feedback control of highly manoeuvrable aircraft, Int. J. Control, Volume 56 (1992), pp. 799–812 | DOI | MR | Zbl

[17] Gozzi, F. Control and Estimation of Distributed Parameter Systems, Some results for an infinite horizon control problem governed by a semilinear state equation (Int. Ser. Numer. Math.), Volume vol. 91, Birkhäuser, Basel (1989), pp. 145–163 (Vorau, 1988) | MR | Zbl

[18] Gozzi, F. Some results for an optimal control problem with semilinear state equation, SIAM J. Control Optim., Volume 29 (1991), pp. 751–768 | DOI | MR | Zbl

[19] Grasedyck, L. Existence and computation of low Kronecker-rank approximations for large linear systems of tensor product structure, Computing, Volume 72 (2004), pp. 247–265 | DOI | MR | Zbl

[20] Grisvard, P. Elliptic Problems in Nonsmooth Domains, SIAM, 1985 | MR | Zbl

[21] Krener, A.; Aguilar, C.; Hunt, T.; Hüper, K.; Trumpf, J. Series solutions of HJB equations, Mathematical System Theory – Festschrift in Honor of Uwe Helmke on the Occasion of His Sixtieth Birthday, CreateSpace, 2013, pp. 247–260

[22] Lasiecka, I.; Triggiani, R. Control Theory for Partial Differential Equations: Continuous and Approximation Theories, vol. 1, Abstract Parabolic Systems, Cambridge University Press, 2000 | MR

[23] Li, X.J.; Yong, J.M. Optimal control theory for infinite-dimensional systems, Systems & Control: Foundations & Applications, Birkhäuser Boston, Inc., Boston, MA, 1995 | MR | Zbl

[24] Lions, J.; Magenes, E. Non-homogeneous Boundary Value Problems and Applications, vols. I/II, Grundlehren Math. Wiss., Springer-Verlag, Berlin, 1972 | MR | Zbl

[25] Lions, J.-L. Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs, J. Math. Soc. Jpn., Volume 14 (1962), pp. 233–241 | MR | Zbl

[26] Lukes, D. Optimal regulation of nonlinear dynamical systems, SIAM J. Control, Volume 7 (1969), pp. 75–100 | DOI | MR | Zbl

[27] Navasca, C.; Krener, A.; Chiuso, A.; Pinzoni, S.; Ferrante, A. Patchy solutions of Hamilton–Jacobi–Bellman partial differential equations, Modeling, Estimation and Control: Festschrift in Honor of Giorgio Picci on the Occasion of His Sixty-Fifth Birthday, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, pp. 251–270 | MR | Zbl

[28] Pazy, A. Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, 1983 | DOI | MR | Zbl

[29] Raymond, J.-P. Feedback boundary stabilization of the two-dimensional Navier–Stokes equations, SIAM J. Control Optim., Volume 45 (2006), pp. 790–828 | MR | Zbl

[30] Showalter, R. Monotone Operators in Banach Space and Nonlinear Partial Differential Equations, Math. Surv. Monogr., vol. 49, American Mathematical Society, 1997 | MR | Zbl

[31] Tanabe, H. Equations of Evolution, Monogr. Stud. Math., vol. 6, Pitman (Advanced Publishing Program), Boston, MA–London, 1979 (translated from the Japanese by N. Mugibayashi and H. Haneda) | MR | Zbl

[32] Thevenet, L.; Buchot, J.-M.; Raymond, J.-P. Nonlinear feedback stabilization of a two-dimensional Burgers equation, ESAIM Control Optim. Calc. Var., Volume 16 (2010), pp. 929–955 | DOI | Numdam | MR | Zbl

[33] Triggiani, R. Boundary feedback stabilizability of parabolic equations, Appl. Math. Optim., Volume 6 (1980), pp. 201–220 | DOI | MR | Zbl

[34] Tröltzsch, F. Optimale Steuerung partieller Differentialgleichungen, Vieweg+Teubner Verlag, 2005 | DOI

Cité par Sources :