Long-period limit of exact periodic traveling wave solutions for the derivative nonlinear Schrödinger equation
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1331-1360.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We study the periodic traveling wave solutions of the derivative nonlinear Schrödinger equation (DNLS). It is known that DNLS has two types of solitons on the whole line; one has exponential decay and the other has algebraic decay. The latter corresponds to the soliton for the massless case. In the new global results recently obtained by Fukaya, Hayashi and Inui [15], the properties of two-parameter of the solitons are essentially used in the proof, and especially the soliton for the massless case plays an important role. To investigate further properties of the solitons, we construct exact periodic traveling wave solutions which yield the solitons on the whole line including the massless case in the long-period limit. Moreover, we study the regularity of the convergence of these exact solutions in the long-period limit. Throughout the paper, the theory of elliptic functions and elliptic integrals is used in the calculation.

DOI : 10.1016/j.anihpc.2018.12.003
Classification : 35Q55, 35C07, 33E05
Mots-clés : Derivative nonlinear Schrödinger equation, Solitons, Periodic traveling waves, Long-period limit, Elliptic functions and elliptic integrals
@article{AIHPC_2019__36_5_1331_0,
     author = {Hayashi, Masayuki},
     title = {Long-period limit of exact periodic traveling wave solutions for the derivative nonlinear {Schr\"odinger} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1331--1360},
     publisher = {Elsevier},
     volume = {36},
     number = {5},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.12.003},
     mrnumber = {3985546},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.12.003/}
}
TY  - JOUR
AU  - Hayashi, Masayuki
TI  - Long-period limit of exact periodic traveling wave solutions for the derivative nonlinear Schrödinger equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1331
EP  - 1360
VL  - 36
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.12.003/
DO  - 10.1016/j.anihpc.2018.12.003
LA  - en
ID  - AIHPC_2019__36_5_1331_0
ER  - 
%0 Journal Article
%A Hayashi, Masayuki
%T Long-period limit of exact periodic traveling wave solutions for the derivative nonlinear Schrödinger equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1331-1360
%V 36
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.12.003/
%R 10.1016/j.anihpc.2018.12.003
%G en
%F AIHPC_2019__36_5_1331_0
Hayashi, Masayuki. Long-period limit of exact periodic traveling wave solutions for the derivative nonlinear Schrödinger equation. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1331-1360. doi : 10.1016/j.anihpc.2018.12.003. http://www.numdam.org/articles/10.1016/j.anihpc.2018.12.003/

[1] Angulo, J. Nonlinear stability of periodic traveling wave solutions to the Schrödinger and the modified Korteweg–de Vries equations, J. Differ. Equ., Volume 235 (2007), pp. 1–30 | MR | Zbl

[2] Angulo, J. Nonlinear Dispersive Equations: Existence and Stability of Solitary and Periodic Travelling Wave Solutions, Math. Surv. Monogr., vol. 156, Amer. Math. Soc., Providence, 2009 | MR | Zbl

[3] Angulo, J.; Bona, J.L.; Scialom, M. Stability of cnoidal waves, Adv. Differ. Equ., Volume 11 (2006), pp. 1321–1374 | MR | Zbl

[4] Angulo, J.; Natali, F. Positivity properties of the Fourier transform and the stability of periodic travelling-wave solutions, SIAM J. Math. Anal., Volume 40 (2008), pp. 1123–1151 | MR | Zbl

[5] Angulo, J.; Natali, F. Stability and instability of periodic travelling wave solutions for the critical Korteweg–de Vries and nonlinear Schrödinger equations, Physica D, Volume 238 (2009), pp. 603–621 | MR | Zbl

[6] Berestycki, H.; Lions, P.-L. Nonlinear scalar field equations. I. Existence of a ground state, Arch. Ration. Mech. Anal., Volume 82 (1983), pp. 313–345 | MR | Zbl

[7] Biagioni, H.; Linares, F. Ill-posedness for the derivative Schrödinger and generalized Benjamin–Ono equations, Trans. Am. Math. Soc., Volume 353 (2001), pp. 3649–3659 | DOI | MR | Zbl

[8] Bourgain, J. Fourier transform restriction phenomena for certain lattice subsets and application to nonlinear evolution equations. I. Schrödinger equations, Geom. Fund. Anal., Volume 3 (1993), pp. 107–156 | MR | Zbl

[9] Brézis, H.; Lieb, E.H. A relation between pointwise convergence of functions and convergence of functionals, Proc. Am. Math. Soc., Volume 88 (1983), pp. 486–490 | DOI | MR | Zbl

[10] Byrd, P.F.; Friedman, M.D. Handbook of Elliptic Integrals for Engineers and Scientists, Springer-Verlag, New York, 1971 | MR | Zbl

[11] Cher, Y.; Simpson, G.; Sulem, C. Local structure of singular profiles for a derivative nonlinear Schrödinger equation, SIAM J. Appl. Dyn. Syst., Volume 16 (2016), pp. 514–545 | MR

[12] Colin, M.; Ohta, M. Stability of solitary waves for derivative nonlinear Schrödinger equation, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 23 (2006), pp. 753–764 | Numdam | MR | Zbl

[13] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. Global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., Volume 33 (2001), pp. 649–669 | DOI | MR | Zbl

[14] Colliander, J.; Keel, M.; Staffilani, G.; Takaoka, H.; Tao, T. A refined global well-posedness for Schrödinger equations with derivative, SIAM J. Math. Anal., Volume 34 (2002), pp. 64–86 | DOI | MR | Zbl

[15] Fukaya, N.; Hayashi, M.; Inui, T. A sufficient condition for global existence of solutions to a generalized derivative nonlinear Schrödinger equation, Anal. PDE, Volume 10 (2017), pp. 1149–1167 | DOI | MR

[16] Gallay, T.; Hărăguş, M. Stability of small periodic waves for the nonlinear Schrodinger equation, J. Differ. Equ., Volume 234 (2007), pp. 544–581 | DOI | MR | Zbl

[17] Gallay, T.; Hărăguş, M. Orbital stability of periodic waves for the nonlinear Schrödinger equation, J. Dyn. Differ. Equ., Volume 19 (2007), pp. 825–865 | DOI | MR | Zbl

[18] Grecu, D.; Grecu, A.T.; Visinescu, A.; Fedele, R.; De Nicola, S. Solitary waves in a Madelung fluid description of derivative NLS equations, J. Nonlinear Math. Phys., Volume 15 (2008), pp. 209–219 | DOI | MR

[19] Grillakis, M.; Shatah, J.; Strauss, W. Stability theory of solitary waves in the presence of symmetry. I, J. Funct. Anal., Volume 74 (1987), pp. 160–197 | DOI | MR | Zbl

[20] Grillakis, M.; Shatah, J.; Strauss, W. Stability theory of solitary waves in the presence of symmetry. II, J. Funct. Anal., Volume 94 (1990), pp. 308–348 | DOI | MR | Zbl

[21] Grünrock, A.; Herr, S. Low regularity local well-posedness of the derivative nonlinear Schrödinger equation with periodic initial data, SIAM J. Math. Anal., Volume 39 (2008), pp. 1890–1920 | DOI | MR | Zbl

[22] Guo, B.; Wu, Y. Orbital stability of solitary waves for the nonlinear derivative Schrödinger equation, J. Differ. Equ., Volume 123 (1995), pp. 35–55 | MR | Zbl

[23] Guo, Z.; Wu, Y. Global well-posedness for the derivative nonlinear Schrödinger equation in H12(R) , Discrete Contin. Dyn. Syst., Volume 37 (2017), pp. 257–264 | MR

[24] Gustafson, S.; Le Coz, S.; Tsai, T.-P. Stability of periodic waves of 1D cubic nonlinear Schrödinger equations (preprint) | arXiv

[25] Hayashi, N. The initial value problem for the derivative nonlinear Schrödinger equation in the energy space, Nonlinear Anal., Volume 20 (1993), pp. 823–833 | DOI | MR | Zbl

[26] Hayashi, N.; Ozawa, T. On the derivative nonlinear Schrödinger equation, Physica D, Volume 55 (1992), pp. 14–36 | DOI | MR | Zbl

[27] Herr, S. On the Cauchy problem for the derivative nonlinear Schrödinger equation with periodic boundary condition, Int. Math. Res. Not. IMRN (2006), pp. 1–33 | MR | Zbl

[28] Imamura, K. Stability and bifurcation of periodic traveling waves in a derivative non-linear Schrödinger equation, Hiroshima Math. J., Volume 40 (2010), pp. 185–203 | DOI | MR | Zbl

[29] Jenkins, R.; Liu, J.; Perry, P.; Sulem, C. Global existence for the derivative nonlinear Schrödinger equation with arbitrary spectral singularities (preprint) | arXiv | MR

[30] Kaup, D.J.; Newell, A.C. An exact solution for a derivative nonlinear Schrodinger equation, J. Math. Phys., Volume 9 (1978), pp. 789–801 | MR | Zbl

[31] Kwon, S.; Wu, Y. Orbital stability of solitary waves for derivative nonlinear Schrödinger equation, J. Anal. Math., Volume 135 (2018), pp. 473–486 | DOI | MR

[32] Lawden, D.F. Elliptic Functions and Applications, Appl. Math. Ser., vol. 80, Springer, New York, 1989 | DOI | MR | Zbl

[33] Lenells, J. Exactly solvable model for nonlinear pulse propagation in optical fibers, Stud. Appl. Math., Volume 123 (2009), pp. 215–232 | DOI | MR | Zbl

[34] Liu, J.; Perry, P.; Sulem, C. Global existence for the derivative nonlinear Schrödinger equation by the method of inverse scattering, Commun. Partial Differ. Equ., Volume 41 (2016), pp. 1692–1760 | MR

[35] Liu, X.; Simpson, G.; Sulem, C. Focusing singularity in a derivative nonlinear Schrödinger equation, Phys. D, Nonlinear Phenom., Volume 262 (2013), pp. 48–58 | MR

[36] Martel, Y.; Merle, F. Blow up in finite time and dynamics of blow up solutions for the L2-critical generalized KdV equation, J. Am. Math. Soc., Volume 15 (2002), pp. 617–664 | DOI | MR | Zbl

[37] Merle, F. Existence of blow-up solutions in the energy space for the critical generalized KdV equation, J. Am. Math. Soc., Volume 14 (2001), pp. 555–578 | DOI | MR | Zbl

[38] Mio, K.; Ogino, T.; Minami, K.; Takeda, S. Modified nonlinear Schrödinger equation for Alfvén waves propagating along magnetic field in cold plasma, J. Phys. Soc., Volume 41 (1976), pp. 265–271 | MR

[39] Mjølhus, E. On the modulational instability of hydromagnetic waves parallel to the magnetic field, J. Plasma Phys., Volume 16 (1976), pp. 321–334 | DOI

[40] Mosincat, R. Global well-posedness of the derivative nonlinear Schrödinger equation with periodic boundary condition in H12 , J. Differ. Equ., Volume 263 (2017), pp. 4658–4722 | DOI | MR

[41] Mosincat, R.; Oh, T. A remark on global well-posedness of the derivative nonlinear Schrödinger equation on the circle, C. R. Math. Acad. Sci. Paris, Volume 353 (2015), pp. 837–841 | DOI | MR

[42] Murai, M.; Sakamoto, K.; Yotsutani, S. Representation formula for traveling waves to a derivative nonlinear Schrödinger equation with the periodic boundary condition, Discrete Contin. Dyn. Syst., Volume 2015 (2015) no. Supplement, pp. 878–900 (AIMS) | MR

[43] Pelinovsky, D.E.; Saalmann, A.; Shimabukuro, Y. The derivative NLS equation: global existence with solitons, Dyn. Partial Differ. Equ., Volume 14 (2017), pp. 271–294 | DOI | MR

[44] Pelinovsky, D.E.; Shimabukuro, Y. Existence of global solutions to the derivative NLS equation with the inverse scattering transform method, Int. Math. Res. Not. (2017), pp. 1–66 | MR

[45] Shatah, J. Stable standing waves of nonlinear Klein–Gordon equations, Commun. Math. Phys., Volume 91 (1983), pp. 313–327 | DOI | MR | Zbl

[46] Takaoka, H. Well-posedness for the one dimensional Schrödinger equation with the derivative nonlinearity, Adv. Differ. Equ., Volume 4 (1999), pp. 561–580 | MR | Zbl

[47] Tan, S.B. Blow-up solutions for mixed nonlinear Schrödinger equations, Acta Math. Sin., Volume 20 (2004), pp. 115–124 | MR | Zbl

[48] Tsutsumi, M.; Fukuda, I. On solutions of the derivative nonlinear Schrödinger equation. Existence and uniqueness, Funkc. Ekvacioj, Volume 23 (1980), pp. 259–277 | MR | Zbl

[49] Tsutsumi, M.; Fukuda, I. On solutions of the derivative nonlinear Schrödinger equation. II, Funkc. Ekvacioj, Volume 24 (1981), pp. 85–94 | MR | Zbl

[50] Weinstein, M.I. Nonlinear Schrödinger equations and sharp interpolation estimates, Commun. Math. Phys., Volume 87 (1982), pp. 567–576 | MR | Zbl

[51] Win, Y. Global well-posedness of the derivative nonlinear Schrödinger equations on T , Funkc. Ekvacioj, Volume 53 (2010), pp. 51–88 | MR | Zbl

[52] Wu, Y. Global well-posedness for the nonlinear Schrödinger equation with derivative in energy space, Anal. PDE, Volume 6 (2013), pp. 1989–2002 | MR | Zbl

[53] Wu, Y. Global well-posedness on the derivative nonlinear Schrödinger equation, Anal. PDE, Volume 8 (2015), pp. 1101–1112 | MR | Zbl

Cité par Sources :