Existence of weak solutions for a Bingham fluid-rigid body system
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1281-1309.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We consider the motion of a rigid body in a viscoplastic material. This material is modeled by the 3D Bingham equations, and the Newton laws govern the displacement of the rigid body. Our main result is the existence of a weak solution for the corresponding system. The weak formulation is an inequality (due to the plasticity of the fluid), and it involves a free boundary (due to the motion of the rigid body). We approximate it by regularizing the convex terms in the Bingham fluid and by using a penalty method to take into account the presence of the rigid body.

DOI : 10.1016/j.anihpc.2018.12.001
Classification : 35Q35, 76D03, 74F10
Mots-clés : Bingham fluid, Rigid body, Fluid-structure interaction systems, Weak solutions
Obando, Benjamin 1, 2 ; Takahashi, Takéo 2

1 Departamento de Ingeniería Matemática, Universidad de Chile, Av. Blanco Encalada 2120, Casilla 170-3, Correo 3, Santiago, Chile
2 Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France
@article{AIHPC_2019__36_5_1281_0,
     author = {Obando, Benjamin and Takahashi, Tak\'eo},
     title = {Existence of weak solutions for a {Bingham} fluid-rigid body system},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1281--1309},
     publisher = {Elsevier},
     volume = {36},
     number = {5},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.12.001},
     mrnumber = {3985544},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.12.001/}
}
TY  - JOUR
AU  - Obando, Benjamin
AU  - Takahashi, Takéo
TI  - Existence of weak solutions for a Bingham fluid-rigid body system
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1281
EP  - 1309
VL  - 36
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.12.001/
DO  - 10.1016/j.anihpc.2018.12.001
LA  - en
ID  - AIHPC_2019__36_5_1281_0
ER  - 
%0 Journal Article
%A Obando, Benjamin
%A Takahashi, Takéo
%T Existence of weak solutions for a Bingham fluid-rigid body system
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1281-1309
%V 36
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.12.001/
%R 10.1016/j.anihpc.2018.12.001
%G en
%F AIHPC_2019__36_5_1281_0
Obando, Benjamin; Takahashi, Takéo. Existence of weak solutions for a Bingham fluid-rigid body system. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1281-1309. doi : 10.1016/j.anihpc.2018.12.001. http://www.numdam.org/articles/10.1016/j.anihpc.2018.12.001/

[1] Bălilescu, Loredana; San Martín, Jorge; Takahashi, Takéo Fluid-rigid structure interaction system with Coulomb's law, SIAM J. Math. Anal., Volume 49 (2017) no. 6, pp. 4625–4657 | MR

[2] Barker, Thomas; Schaeffer, David G.; Bohórquez, Patricio; Gray, Jhon Well-posed and ill-posed behaviour of the μ(i)-rheology for granular flow, J. Fluid Mech., Volume 779 (2015), pp. 794–818 | MR

[3] Bingham, Eugene C. Bulletin of the Bureau of Standards, vol. 13 (1916), pp. 309–353

[4] Bost, Claire; Cottet, Georges-Henri; Maitre, Emmanuel Convergence analysis of a penalization method for the three-dimensional motion of a rigid body in an incompressible viscous fluid, SIAM J. Numer. Anal., Volume 48 (2010) no. 4, pp. 1313–1337 | MR | Zbl

[5] Boulakia, Muriel Existence of weak solutions for an interaction problem between an elastic structure and a compressible viscous fluid, J. Math. Pures Appl. (9), Volume 84 (2005) no. 11, pp. 1515–1554 | MR | Zbl

[6] Boulakia, Muriel; Guerrero, Sergio A regularity result for a solid–fluid system associated to the compressible Navier–Stokes equations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 26 (2009) no. 3, pp. 777–813 | Numdam | MR | Zbl

[7] Bravin, Marco On the weak uniqueness of “viscous incompressible fluid + rigid body” system with Navier slip-with-friction conditions in a 2D bounded domain, 2018 | arXiv

[8] Bulíček, Miroslav; Málek, Josef On unsteady internal flows of Bingham fluids subject to threshold slip on the impermeable boundary, Recent Developments of Mathematical Fluid Mechanics, Adv. Math. Fluid Mech., Birkhäuser/Springer, Basel, 2016, pp. 135–156 | MR

[9] Chemetov, Nikolai V.; Nečasová, Šárka The motion of the rigid body in the viscous fluid including collisions. Global solvability result, Nonlinear Anal., Real World Appl., Volume 34 (2017), pp. 416–445 | MR

[10] Chemetov, Nikolai V.; Nečasová, Šárka; Muha, Boris Weak–strong uniqueness for fluid-rigid body interaction problem with slip boundary condition, 2017 | arXiv | MR

[11] Conca, Carlos; San Martín, Jorge; Tucsnak, Marius Existence of solutions for the equations modelling the motion of a rigid body in a viscous fluid, Commun. Partial Differ. Equ., Volume 25 (2000) no. 5–6, pp. 1019–1042 | MR | Zbl

[12] Dean, Edward J.; Glowinski, Roland; Guidoboni, Giovanna On the numerical simulation of Bingham visco-plastic flow: old and new results, J. Non-Newton. Fluid Mech., Volume 142 (2007) no. 1, pp. 36–62 | Zbl

[13] Desjardins, Benoît; Esteban, Maria J. Existence of weak solutions for the motion of rigid bodies in a viscous fluid, Arch. Ration. Mech. Anal., Volume 146 (1999) no. 1, pp. 59–71 | MR | Zbl

[14] Desjardins, Benoît; Esteban, Maria J. On weak solutions for fluid-rigid structure interaction: compressible and incompressible models, Commun. Partial Differ. Equ., Volume 25 (2000) no. 7–8, pp. 1399–1413 | MR | Zbl

[15] Drucker, Daniel C.; Prager, William Soil mechanics and plastic analysis or limit design, Q. Appl. Math., Volume 10 (1952) no. 2, pp. 157–165 | MR | Zbl

[16] Duvaut, Georges; Lions, Jacques-Louis Inequalities in Mechanics and Physics, Grundlehren der Mathematischen Wissenschaften, vol. 219, Springer-Verlag, Berlin–New York, 1976 (translated from the French by C.W. John) | DOI | MR | Zbl

[17] Ervedoza, S.; Hillairet, M.; Lacave, C. Long-time behavior for the two-dimensional motion of a disk in a viscous fluid, Commun. Math. Phys., Volume 329 (2014) no. 1, pp. 325–382 | DOI | MR | Zbl

[18] Feireisl, Eduard On the motion of rigid bodies in a viscous compressible fluid, Arch. Ration. Mech. Anal., Volume 167 (2003) no. 4, pp. 281–308 | MR | Zbl

[19] Feireisl, Eduard On the motion of rigid bodies in a viscous incompressible fluid, J. Evol. Equ., Volume 3 (2003) no. 3, pp. 419–441 | MR | Zbl

[20] Feireisl, Eduard; Hillairet, Matthieu; Nečasová, Šárka On the motion of several rigid bodies in an incompressible non-Newtonian fluid, Nonlinearity, Volume 21 (2008) no. 6, pp. 1349–1366 | MR | Zbl

[21] Feireisl, Eduard; Nečasová, Šárka On the motion of several rigid bodies in a viscous multipolar fluid, Functional Analysis and Evolution Equations, Birkhäuser, Basel, 2008, pp. 291–305 | MR | Zbl

[22] Frigaard, Ian A.; Iglesias, José A.; Mercier, Gwenael; Pöschl, Christiane; Scherzer, Otmar Critical yield numbers of rigid particles settling in Bingham fluids and Cheeger sets, SIAM J. Appl. Math., Volume 77 (2017) no. 2, pp. 638–663 | MR

[23] Fujita, Hiroshi; Sauer, Niko On existence of weak solutions of the Navier–Stokes equations in regions with moving boundaries, J. Fac. Sci., Univ. Tokyo, Sect. I, Volume 17 (1970), pp. 403–420 | MR | Zbl

[24] Galdi, Giovanni P. Slow motion of a body in a viscous incompressible fluid with application to particle sedimentation, Recent Developments in Partial Differential Equations, Quad. Mat., vol. 2, Dept. Math., Seconda Univ. Napoli, Caserta, 1998, pp. 1–35 | MR | Zbl

[25] Galdi, Giovanni P. An Introduction to the Mathematical Theory of the Navier–Stokes Equations – Steady-State Problems, Springer Monographs in Mathematics, Springer, New York, 2011 | MR | Zbl

[26] Galdi, Giovanni P.; Silvestre, Ana L. Strong solutions to the problem of motion of a rigid body in a Navier–Stokes liquid under the action of prescribed forces and torques, Nonlinear Problems in Mathematical Physics and Related Topics, I, Int. Math. Ser. (N. Y.), vol. 1, Kluwer/Plenum, New York, 2002, pp. 121–144 | MR | Zbl

[27] Geissert, Matthias; Götze, Karoline; Hieber, Matthias Lp-theory for strong solutions to fluid-rigid body interaction in Newtonian and generalized Newtonian fluids, Trans. Am. Math. Soc., Volume 365 (2013) no. 3, pp. 1393–1439 | MR | Zbl

[28] de Gennes, Pierre-Gilles From Rice to Snow, Springer Japan, Tokyo (2008), pp. 297–318

[29] Gérard-Varet, David; Hillairet, Matthieu Existence of weak solutions up to collision for viscous fluid–solid systems with slip, Commun. Pure Appl. Math., Volume 67 (2014) no. 12, pp. 2022–2075 | MR | Zbl

[30] Glass, Olivier; Sueur, Franck On the motion of a rigid body in a two-dimensional irregular ideal flow, SIAM J. Math. Anal., Volume 44 (2012) no. 5, pp. 3101–3126 | MR | Zbl

[31] Glass, Olivier; Sueur, Franck Uniqueness results for weak solutions of two-dimensional fluid–solid systems, Arch. Ration. Mech. Anal., Volume 218 (2015) no. 2, pp. 907–944 | MR

[32] Glowinski, Roland; Pan, Tsorng-Whay; Hesla, Todd I.; Joseph, Daniel D.; Periaux, Jacques A distributed Lagrange multiplier/fictitious domain method for the simulation of flow around moving rigid bodies: application to particulate flow, Comput. Methods Appl. Mech. Eng., Volume 184 (2000) no. 2–4, pp. 241–267 (Vistas in domain decomposition and parallel processing in computational mechanics) | MR | Zbl

[33] Goddard, Joe D. Continuum modeling of granular media, Appl. Mech. Rev., Volume 5 (2014) no. 66 (18 pages)

[34] Grandmont, Céline; Guimet, Valérie; Maday, Yvon Numerical analysis of some decoupling techniques for the approximation of the unsteady fluid structure interaction, Math. Models Methods Appl. Sci., Volume 11 (2001) no. 8, pp. 1349–1377 | MR | Zbl

[35] Grandmont, Céline; Maday, Yvon Existence for an unsteady fluid-structure interaction problem, Modél. Math. Anal. Numér., Volume 34 (2000) no. 3, pp. 609–636 | Numdam | MR | Zbl

[36] Gunzburger, Max D.; Lee, Hyung-Chun; Seregin, Gregory A. Global existence of weak solutions for viscous incompressible flows around a moving rigid body in three dimensions, J. Math. Fluid Mech., Volume 2 (2000) no. 3, pp. 219–266 | MR | Zbl

[37] Hillairet, M. Lack of collision between solid bodies in a 2D incompressible viscous flow, Commun. Partial Differ. Equ., Volume 32 (2007) no. 7–9, pp. 1345–1371 | MR | Zbl

[38] Hillairet, Matthieu; Takahashi, Takéo Collisions in three-dimensional fluid structure interaction problems, SIAM J. Math. Anal., Volume 40 (2009) no. 6, pp. 2451–2477 | MR | Zbl

[39] Houot, Jean Gabriel; San Martín, Jorge; Tucsnak, Marius Existence of solutions for the equations modeling the motion of rigid bodies in an ideal fluid, J. Funct. Anal., Volume 259 (2010) no. 11, pp. 2856–2885 | MR | Zbl

[40] Ionescu, Ioan R.; Mangeney, Anne; Bouchut, François; Roche, Olivier Viscoplastic modeling of granular column collapse with pressure-dependent rheology, J. Non-Newton. Fluid Mech., Volume 219 (2015), pp. 1–18 | MR

[41] Jop, Pierre; Forterre, Yoël; Pouliquen, Olivier A constitutive law for dense granular flows, Nature, Volume 441 (2006), pp. 727–730

[42] Lions, Pierre-Louis Mathematical Topics in Fluid Mechanics, vol. 1, Oxford Lecture Series in Mathematics and Its Applications, vol. 3, The Clarendon Press, Oxford University Press, New York, 1996 | MR | Zbl

[43] Maury, Bertrand Direct simulations of 2D fluid-particle flows in biperiodic domains, J. Comput. Phys., Volume 156 (1999) no. 2, pp. 325–351 | MR | Zbl

[44] Meruane, Carolina; Tamburrino, Aldo; Roche, Olivier Dynamics of dense granular flows of small-and-large-grain mixtures in an ambient fluid, Phys. Rev. E, Volume 86 (Aug. 2012)

[45] Mosolov, P.P.; Miasnikov, V.P. Variational methods in the theory of the fluidity of a viscous-plastic medium, J. Appl. Math. Mech., Volume 29 (1965) no. 3, pp. 545–577 | DOI | Zbl

[46] Mosolov, P.P.; Miasnikov, V.P. On stagnant flow regions of a viscous-plastic medium in pipes, J. Appl. Math. Mech., Volume 30 (1966) no. 4, pp. 841–854 | DOI | Zbl

[47] Oldroyd, James G. A rational formulation of the equations of plastic flow for a Bingham solid, Proc. Camb. Philos. Soc., Volume 43 (1947), pp. 100–105 | MR | Zbl

[48] Ortega, Jaime; Rosier, Lionel; Takahashi, Takéo On the motion of a rigid body immersed in a bidimensional incompressible perfect fluid, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 24 (2007) no. 1, pp. 139–165 | Numdam | MR | Zbl

[49] Prager, William On slow visco-plastic flow, Studies in Mathematics and Mechanics Presented to Richard von Mises, Academic Press Inc., New York, 1954, pp. 208–216 | MR | Zbl

[50] Putz, Andreas; Frigaard, Ian A. Creeping flow around particles in a Bingham fluid, J. Non-Newton. Fluid Mech., Volume 165 (2010) no. 5, pp. 263–280 | Zbl

[51] San Martín, Jorge; Scheid, Jean-François; Takahashi, Takéo; Tucsnak, Marius Convergence of the Lagrange–Galerkin method for the equations modelling the motion of a fluid-rigid system, SIAM J. Numer. Anal., Volume 43 (2005) no. 4, pp. 1536–1571 | MR | Zbl

[52] San Martín, Jorge Alonso; Starovoitov, Victor; Tucsnak, Marius Global weak solutions for the two-dimensional motion of several rigid bodies in an incompressible viscous fluid, Arch. Ration. Mech. Anal., Volume 161 (2002) no. 2, pp. 113–147 | MR | Zbl

[53] Saramito, Pierre Complex Fluids – Modeling and Algorithms, Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 79, Springer, Cham, 2016 | DOI | MR

[54] Schaeffer, David G. Instability in the evolution equations describing incompressible granular flow, J. Differ. Equ., Volume 66 (1987) no. 1, pp. 19–50 | MR | Zbl

[55] Silvestre, Ana Leonor On the self-propelled motion of a rigid body in a viscous liquid and on the attainability of steady symmetric self-propelled motions, J. Math. Fluid Mech., Volume 4 (2002) no. 4, pp. 285–326 | MR | Zbl

[56] Takahashi, Takéo Analysis of strong solutions for the equations modeling the motion of a rigid-fluid system in a bounded domain, Adv. Differ. Equ., Volume 8 (2003) no. 12, pp. 1499–1532 | MR | Zbl

[57] Takahashi, Takéo; Tucsnak, Marius Global strong solutions for the two-dimensional motion of an infinite cylinder in a viscous fluid, J. Math. Fluid Mech., Volume 6 (2004) no. 1, pp. 53–77 | MR | Zbl

[58] Temam, Roger Navier–Stokes Equations, Studies in Mathematics and Its Applications, vol. 2, North-Holland Publishing Co., Amsterdam–New York, 1979 | MR | Zbl

[59] Temam, Roger Mathematical Problems in Plasticity, Modern Applied Mathematics Series, Gauthier-Villars, Montrouge, 1985 | MR

[60] Wolf, Jörg Existence of weak solutions to the equations of non-stationary motion of non-Newtonian fluids with shear rate dependent viscosity, J. Math. Fluid Mech., Volume 9 (2007) no. 1, pp. 104–138 | MR | Zbl

Cité par Sources :