The vanishing viscosity limit for some symmetric flows
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1237-1280.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

The focus of this paper is on the analysis of the boundary layer and the associated vanishing viscosity limit for two classes of flows with symmetry, namely, Plane-Parallel Channel Flows and Parallel Pipe Flows. We construct explicit boundary layer correctors, which approximate the difference between the Navier–Stokes and the Euler solutions. Using properties of these correctors, we establish convergence of the Navier–Stokes solution to the Euler solution as viscosity vanishes with optimal rates of convergence. In addition, we investigate vorticity production on the boundary in the limit of vanishing viscosity. Our work significantly extends prior work in the literature.

DOI : 10.1016/j.anihpc.2018.11.006
Classification : 35B25, 35C20, 76D05, 76D10
Mots-clés : Boundary layers, Singular perturbations, Navier–Stokes equations, Euler equations, Inviscid limit
Gie, Gung-Min 1 ; Kelliher, James P. 2 ; Lopes Filho, Milton C. 3 ; Mazzucato, Anna L. 4 ; Nussenzveig Lopes, Helena J. 3

1 Department of Mathematics, University of Louisville, 328 Natural Sciences Building, Louisville, KY 40292, USA
2 Department of Mathematics, University of California, Riverside, 900 University Ave., Riverside, CA 92521, USA
3 Instituto de Matematica, Universidade Federal do Rio de Janeiro, Caixa Postal 68530, 21941-909, Rio de Janeiro, RJ, Brazil
4 Department of Mathematics, Penn State University, University Park, PA 16802, USA
@article{AIHPC_2019__36_5_1237_0,
     author = {Gie, Gung-Min and Kelliher, James P. and Lopes Filho, Milton C. and Mazzucato, Anna L. and Nussenzveig Lopes, Helena J.},
     title = {The vanishing viscosity limit for some symmetric flows},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1237--1280},
     publisher = {Elsevier},
     volume = {36},
     number = {5},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.11.006},
     mrnumber = {3985543},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.11.006/}
}
TY  - JOUR
AU  - Gie, Gung-Min
AU  - Kelliher, James P.
AU  - Lopes Filho, Milton C.
AU  - Mazzucato, Anna L.
AU  - Nussenzveig Lopes, Helena J.
TI  - The vanishing viscosity limit for some symmetric flows
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1237
EP  - 1280
VL  - 36
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.11.006/
DO  - 10.1016/j.anihpc.2018.11.006
LA  - en
ID  - AIHPC_2019__36_5_1237_0
ER  - 
%0 Journal Article
%A Gie, Gung-Min
%A Kelliher, James P.
%A Lopes Filho, Milton C.
%A Mazzucato, Anna L.
%A Nussenzveig Lopes, Helena J.
%T The vanishing viscosity limit for some symmetric flows
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1237-1280
%V 36
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.11.006/
%R 10.1016/j.anihpc.2018.11.006
%G en
%F AIHPC_2019__36_5_1237_0
Gie, Gung-Min; Kelliher, James P.; Lopes Filho, Milton C.; Mazzucato, Anna L.; Nussenzveig Lopes, Helena J. The vanishing viscosity limit for some symmetric flows. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1237-1280. doi : 10.1016/j.anihpc.2018.11.006. http://www.numdam.org/articles/10.1016/j.anihpc.2018.11.006/

[1] Asano, Kiyoshi A note on the abstract Cauchy–Kowalewski theorem, Proc. Jpn. Acad., Ser. A, Math. Sci., Volume 64 (1988) no. 4, pp. 102–105 | MR | Zbl

[2] Bardos, C. Existence et unicité de la solution de l'équation d'Euler en dimension deux, J. Math. Anal. Appl., Volume 40 (1972), pp. 769–790 | DOI | MR | Zbl

[3] Bardos, C.; Lopes Filho, M.C.; Niu, Dongjuan; Nussenzveig Lopes, H.J.; Titi, E.S. Stability of two-dimensional viscous incompressible flows under three-dimensional perturbations and inviscid symmetry breaking, SIAM J. Math. Anal., Volume 45 (2013) no. 3, pp. 1871–1885 | DOI | MR | Zbl

[4] C. Bardos, E. Titi, E. Wiedemann, Onsager's conjecture with physical boundaries and an application to the vanishing viscosity limit, arXiv e-prints, March 2018. | MR

[5] Bardos, Claude; Titi, Edriss S.; Wiedemann, Emil The vanishing viscosity as a selection principle for the Euler equations: the case of 3D shear flow, C. R. Math. Acad. Sci. Paris, Volume 350 (2012) no. 15–16, pp. 757–760 | MR | Zbl

[6] Bardos, Claude W.; Titi, Edriss S. Mathematics and turbulence: where do we stand?, J. Turbul., Volume 14 (2013) no. 3, pp. 42–76 | MR

[7] Bardos, K.; Székelyhidi, L. Jr.; Videmann, È. On the absence of uniqueness for the Euler equations: the effect of the boundary, Usp. Mat. Nauk, Volume 69 (2014) no. 2(416), pp. 3–22 | MR | Zbl

[8] Bardos, K.; Titi, È.S. Euler equations for an ideal incompressible fluid, Usp. Mat. Nauk, Volume 62 (2007) no. 3(375), pp. 5–46 | MR | Zbl

[9] Batchelor, G.K. An Introduction to Fluid Dynamics, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1999 (paperback edition) | MR | Zbl

[10] J. Bedrossian, P. Germain, N. Masmoudi, Dynamics near the subcritical transition of the 3D Couette flow I: below threshold case, arXiv e-prints, June 2015. | MR

[11] J. Bedrossian, P. Germain, N. Masmoudi, Dynamics near the subcritical transition of the 3D Couette flow II: above threshold case, arXiv e-prints, June 2015. | MR

[12] Bedrossian, Jacob; Germain, Pierre; Masmoudi, Nader On the stability threshold for the 3D Couette flow in Sobolev regularity, Ann. Math. (2), Volume 185 (2017) no. 2, pp. 541–608 | MR

[13] Bedrossian, Jacob; Masmoudi, Nader Asymptotic stability for the Couette flow in the 2D Euler equations, Appl. Math. Res. Express (2014) no. 1, pp. 157–175 | MR | Zbl

[14] Beirão da Veiga, H.; Crispo, F. Sharp inviscid limit results under Navier type boundary conditions. An Lp theory, J. Math. Fluid Mech., Volume 12 (2010) no. 3, pp. 397–411 | MR | Zbl

[15] Beirão da Veiga, H.; Crispo, F. A missed persistence property for the Euler equations, and its effect on inviscid limits, Nonlinearity, Volume 25 (2011) no. 6, pp. 1661–1669 | MR | Zbl

[16] Bellout, Hamid; Neustupa, Jiří A Navier–Stokes approximation of the 3D Euler equation with the zero flux on the boundary, J. Math. Fluid Mech., Volume 10 (2008) no. 4, pp. 531–553 | MR | Zbl

[17] Bellout, Hamid; Neustupa, Jiří; Penel, Patrick On the Navier–Stokes equation with boundary conditions based on vorticity, Math. Nachr., Volume 269 (2004) no. 270, pp. 59–72 | MR | Zbl

[18] Bellout, Hamid; Neustupa, Jiří; Penel, Patrick On viscosity-continuous solutions of the Euler and Navier–Stokes equations with a Navier-type boundary condition, C. R. Math. Acad. Sci. Paris, Volume 347 (2009) no. 19–20, pp. 1141–1146 | MR | Zbl

[19] Bellout, Hamid; Neustupa, Jiří; Penel, Patrick On a v -continuous family of strong solutions to the Euler or Navier–Stokes equations with the Navier-type boundary condition, Discrete Contin. Dyn. Syst., Volume 27 (2010) no. 4, pp. 1353–1373 | MR | Zbl

[20] Bona, Jerry L.; Wu, Jiahong The zero-viscosity limit of the 2D Navier–Stokes equations, Stud. Appl. Math., Volume 109 (2002) no. 4, pp. 265–278 | MR | Zbl

[21] Buckmaster, Tristan; De Lellis, Camillo; Székelyhidi, László Jr. Dissipative Euler flows with Onsager-critical spatial regularity, Commun. Pure Appl. Math., Volume 69 (2016) no. 9, pp. 1613–1670 | MR

[22] Cannon, John Rozier The One-dimensional Heat Equation, Encyclopedia of Mathematics and Its Applications, vol. 23, Addison–Wesley Publishing Company Advanced Book Program, Reading, MA, 1984 | DOI | MR | Zbl

[23] Cannone, M.; Lombardo, M.C.; Sammartino, M. Well-posedness of Prandtl equations with non-compatible data, Nonlinearity, Volume 26 (2013) no. 12, pp. 3077–3100 | DOI | MR | Zbl

[24] Clopeau, Thierry; Mikelić, Andro; Robert, Raoul On the vanishing viscosity limit for the 2D incompressible Navier–Stokes equations with the friction type boundary conditions, Nonlinearity, Volume 11 (1998) no. 6, pp. 1625–1636 | MR | Zbl

[25] P. Constantin, T. Elgindi, M. Ignatova, V. Vicol, Remarks on the inviscid limit for the Navier–Stokes equations for uniformly bounded velocity fields, arXiv e-prints, December 2015. | MR

[26] Constantin, Peter; Foias, Ciprian Navier–Stokes Equations, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1988 | DOI | MR | Zbl

[27] Drivas, Theodore D.; Nguyen, Huy Q. Onsager's conjecture and anomalous dissipation on domains with boundary, SIAM J. Math. Anal., Volume 50 (2018) no. 5, pp. 4785–4811 | MR

[28] E, Weinan; Engquist, Bjorn Blowup of solutions of the unsteady Prandtl's equation, Commun. Pure Appl. Math., Volume 50 (1997) no. 12, pp. 1287–1293 | MR | Zbl

[29] Evans, Lawrence C. Partial Differential Equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 2010 | MR | Zbl

[30] Gargano, F.; Sammartino, M.; Sciacca, V. Singularity formation for Prandtl's equations, Physica D, Volume 238 (2009) no. 19, pp. 1975–1991 | DOI | MR | Zbl

[31] Gérard-Varet, D.; Nguyen, T. Remarks on the ill-posedness of the Prandtl equation, Asymptot. Anal., Volume 77 (2012) no. 1–2, pp. 71–88 | MR | Zbl

[32] Gérard-Varet, David; Dormy, Emmanuel On the ill-posedness of the Prandtl equation, J. Am. Math. Soc., Volume 23 (2010) no. 2, pp. 591–609 | MR | Zbl

[33] Gérard-Varet, David; Maekawa, Yasunori; Masmoudi, Nader Gevrey stability of Prandtl expansions for 2-dimensional Navier–Stokes flows, Duke Math. J., Volume 167 (2018) no. 13, pp. 2531–2631 | MR

[34] Gie, Gung-Min Asymptotic expansion of the Stokes solutions at small viscosity: the case of non-compatible initial data, Commun. Math. Sci., Volume 12 (2014) no. 2, pp. 383–400 | MR | Zbl

[35] Gie, Gung-Min; Hamouda, Makram; Temam, Roger Boundary layers in smooth curvilinear domains: parabolic problems, Discrete Contin. Dyn. Syst., Volume 26 (2010) no. 4, pp. 1213–1240 | MR | Zbl

[36] Gie, Gung-Min; Hamouda, Makram; Temam, Roger Asymptotic analysis of the Navier–Stokes equations in a curved domain with a non-characteristic boundary, Netw. Heterog. Media, Volume 7 (2012) no. 4, pp. 741–766 | MR | Zbl

[37] Gie, Gung-Min; Jung, Chang-Yeol Vorticity layers of the 2D Navier–Stokes equations with a slip type boundary condition, Asymptot. Anal., Volume 84 (2013) no. 1–2, pp. 17–33 | MR | Zbl

[38] Gie, Gung-Min; Kelliher, James P. Boundary layer analysis of the Navier–Stokes equations with generalized Navier boundary conditions, J. Differ. Equ., Volume 253 (2012) no. 6, pp. 1862–1892 | MR | Zbl

[39] Grenier, Emmanuel On the nonlinear instability of Euler and Prandtl equations, Commun. Pure Appl. Math., Volume 53 (2000) no. 9, pp. 1067–1091 | MR | Zbl

[40] Grenier, Emmanuel; Guo, Yan; Nguyen, Toan T. Spectral instability of characteristic boundary layer flows, Duke Math. J., Volume 165 (2016) no. 16, pp. 3085–3146 | MR

[41] Grenier, Emmanuel; Guo, Yan; Nguyen, Toan T. Spectral instability of general symmetric shear flows in a two-dimensional channel, Adv. Math., Volume 292 (2016), pp. 52–110 | MR

[42] Grenier, Emmanuel; Nguyen, Toan T. Sublayer of Prandtl boundary layers, Arch. Ration. Mech. Anal., Volume 229 (2018) no. 3, pp. 1139–1151 | MR

[43] Guo, Yan; Nguyen, Toan A note on Prandtl boundary layers, Commun. Pure Appl. Math., Volume 64 (2011) no. 10, pp. 1416–1438 | MR | Zbl

[44] Hamouda, Makram; Temam, Roger Some singular perturbation problems related to the Navier–Stokes equations, Advances in Deterministic and Stochastic Analysis, World Sci. Publ., Hackensack, NJ, 2007, pp. 197–227 | MR | Zbl

[45] Han, Daozhi; Mazzucato, Anna L.; Niu, Dongjuan; Wang, Xiaoming Boundary layer for a class of nonlinear pipe flow, J. Differ. Equ., Volume 252 (2012) no. 12, pp. 6387–6413 | MR | Zbl

[46] Iftimie, Dragoş; Planas, Gabriela Inviscid limits for the Navier–Stokes equations with Navier friction boundary conditions, Nonlinearity, Volume 19 (2006) no. 4, pp. 899–918 | MR | Zbl

[47] Iftimie, Dragoş; Sueur, Franck Viscous boundary layers for the Navier–Stokes equations with the Navier slip conditions, Arch. Ration. Mech. Anal., Volume 20 (2010) (Online First) | MR | Zbl

[48] Isett, Philip A proof of Onsager's conjecture, Ann. Math. (2), Volume 188 (2018) no. 3, pp. 871–963 | MR

[49] Jung, Chang-Yeol; Petcu, Madalina; Temam, Roger Singular perturbation analysis on a homogeneous ocean circulation model, Anal. Appl., Volume 9 (2011) no. 3, pp. 275–313 | MR | Zbl

[50] Kato, Tosio Nonstationary flows of viscous and ideal fluids in R3 , J. Funct. Anal., Volume 9 (1972), pp. 296–305 | MR | Zbl

[51] Kato, Tosio Spectral Theory and Differential Equations, Proc. Sympos., Quasi-linear equations of evolution, with applications to partial differential equations (Lect. Notes Math.), Volume vol. 448, Springer, Berlin (1974), pp. 25–70 Dundee, 1974 (dedicated to Konrad Jörgens) | MR | Zbl

[52] Kato, Tosio Seminar on Nonlinear Partial Differential Equations, Remarks on zero viscosity limit for nonstationary Navier–Stokes flows with boundary (Math. Sci. Res. Inst. Publ.), Volume vol. 2, Springer, New York (1984), pp. 85–98 (Berkeley, CA, 1983) | MR | Zbl

[53] Kelliher, James P. Navier–Stokes equations with Navier boundary conditions for a bounded domain in the plane, SIAM J. Math. Anal., Volume 38 (2006) no. 1, pp. 210–232 | MR | Zbl

[54] Kelliher, James P. Vanishing viscosity and the accumulation of vorticity on the boundary, Commun. Math. Sci., Volume 6 (2008) no. 4, pp. 869–880 | MR | Zbl

[55] Kelliher, James P. On the vanishing viscosity limit in a disk, Math. Ann., Volume 343 (2009) no. 3, pp. 701–726 | MR | Zbl

[56] James P. Kelliher, Observations on the vanishing viscosity limit, preprint, 2014. | MR

[57] Kukavica, Igor; Masmoudi, Nader; Vicol, Vlad; Wong, Tak Kwong On the local well-posedness of the Prandtl and hydrostatic Euler equations with multiple monotonicity regions, SIAM J. Math. Anal., Volume 46 (2014) no. 6, pp. 3865–3890 | MR

[58] Kukavica, Igor; Vicol, Vlad On the local existence of analytic solutions to the Prandtl boundary layer equations, Commun. Math. Sci., Volume 11 (2013) no. 1, pp. 269–292 | MR | Zbl

[59] Lighthill, M.J.; Rosenhead, L. Introduction – boundary layer theory, Laminar Boundary Layers, Chapter II, Oxford University Press, Oxford, 1963, pp. 46–113 | MR

[60] Lions, J.-L. Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, 1969 | MR | Zbl

[61] Lions, J.L. Perturbations singulières dans les problèmes aux limites et en contrôle optimal, Lecture Notes in Mathematics, vol. 323, Springer-Verlag, Berlin, New York, 1973 | DOI | MR | Zbl

[62] Lions, Pierre-Louis Mathematical Topics in Fluid Mechanics, vol. 1, Oxford Lecture Series in Mathematics and Its Applications, vol. 3, The Clarendon Press Oxford University Press, New York, 1996 | MR | Zbl

[63] Lombardo, Maria Carmela; Cannone, Marco; Sammartino, Marco Well-posedness of the boundary layer equations, SIAM J. Math. Anal., Volume 35 (2003) no. 4, pp. 987–1004 (electronic) | MR | Zbl

[64] Lopes Filho, M.C.; Mazzucato, A.L.; Nussenzveig Lopes, H.J.; Taylor, Michael Vanishing viscosity limits and boundary layers for circularly symmetric 2D flows, Bull. Braz. Math. Soc. (N.S.), Volume 39 (2008) no. 4, pp. 471–513 | MR | Zbl

[65] Lopes Filho, M.C.; Nussenzveig Lopes, H.J.; Planas, G. On the inviscid limit for two-dimensional incompressible flow with Navier friction condition, SIAM J. Math. Anal., Volume 36 (2005) no. 4, pp. 1130–1141 | MR | Zbl

[66] Lopes Filho, Milton C.; Nussenzveig Lopes, Helena J.; Tadmor, Eitan Approximate solutions of the incompressible Euler equations with no concentrations, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 17 (2000) no. 3, pp. 371–412 | Numdam | MR | Zbl

[67] Yasunori Maekawa, On the inviscid limit problem of the vorticity equations for viscous incompressible flows in the half plane, preprint, 2012. | MR | Zbl

[68] Masmoudi, Nader Remarks about the inviscid limit of the Navier–Stokes system, Commun. Math. Phys., Volume 270 (2007) no. 3, pp. 777–788 | MR | Zbl

[69] Masmoudi, Nader; Rousset, Frédéric Uniform regularity for the Navier–Stokes equation with Navier boundary condition, Arch. Ration. Mech. Anal., Volume 203 (2012) no. 2, pp. 529–575 | MR | Zbl

[70] Matsui, Shin'ya Example of zero viscosity limit for two-dimensional nonstationary Navier–Stokes flows with boundary, Jpn. J. Ind. Appl. Math., Volume 11 (1994) no. 1, pp. 155–170 | MR | Zbl

[71] Mazzucato, A.; Taylor, M. Vanishing viscosity limits for a class of circular pipe flows, Commun. Partial Differ. Equ., Volume 36 (2011) no. 2, pp. 328–361 | DOI | MR | Zbl

[72] Mazzucato, Anna; Niu, Dongjuan; Wang, Xiaoming Boundary layer associated with a class of 3D nonlinear plane parallel channel flows, Indiana Univ. Math. J., Volume 60 (2011) no. 4, pp. 1113–1136 | MR | Zbl

[73] Mazzucato, Anna; Taylor, Michael Vanishing viscosity plane parallel channel flow and related singular perturbation problems, Anal. PDE, Volume 1 (2008) no. 1, pp. 35–93 | MR | Zbl

[74] Morton, B.R. The generation and decay of vorticity, Geophys. Astrophys. Fluid Dyn., Volume 28 (1984) no. 3–4, pp. 277–308 | Zbl

[75] Oleĭnik, O.A. On the mathematical theory of boundary layer for an unsteady flow of incompressible fluid, J. Appl. Math. Mech., Volume 30 (1967), pp. 951–974 (1966) | MR | Zbl

[76] Oleinik, O.A.; Samokhin, V.N. Mathematical Models in Boundary Layer Theory, Applied Mathematics and Mathematical Computation, vol. 15, Chapman & Hall/CRC, Boca Raton, FL, 1999 | MR | Zbl

[77] Sammartino, Marco; Caflisch, Russel E. Zero viscosity limit for analytic solutions, of the Navier–Stokes equation on a half-space I, II, Commun. Math. Phys., Volume 192 (1998) no. 2, pp. 433–491 | MR | Zbl

[78] Sammartino, Marco; Caflisch, Russel E. Zero viscosity limit for analytic solutions, of the Navier–Stokes equation on a half-space II. Construction of the Navier–Stokes solution, Commun. Math. Phys., Volume 192 (1998) no. 2, pp. 433–461 | Zbl

[79] Schlichting, Herrmann; Gersten, Klaus Boundary-Layer Theory, Springer-Verlag, Berlin, 2000 (enlarged edition with contributions by Egon Krause and Herbert Oertel, Jr., translated from the ninth German edition by Katherine Mayes) | DOI | MR | Zbl

[80] Swann, H.S.G. The convergence with vanishing viscosity of nonstationary Navier–Stokes flow to ideal flow in R3 , Trans. Am. Math. Soc., Volume 157 (1971), pp. 373–397 | MR | Zbl

[81] Temam, R.; Wang, X. Boundary layers in channel flow with injection and suction, Appl. Math. Lett., Volume 14 (2001) no. 1, pp. 87–91 | DOI | MR | Zbl

[82] Temam, R.; Wang, X. Boundary layers associated with incompressible Navier–Stokes equations: the noncharacteristic boundary case, J. Differ. Equ., Volume 179 (2002) no. 2, pp. 647–686 | DOI | MR | Zbl

[83] Temam, Roger; Wang, Xiaoming On the behavior of the solutions of the Navier–Stokes equations at vanishing viscosity, Ann. Sc. Norm. Super. Pisa, Cl. Sci., Volume 25 (1998) no. 3–4, pp. 807–828 1997 (dedicated to Ennio De Giorgi) | Numdam | MR | Zbl

[84] M. Vishik, Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid, Part I, arXiv e-prints, May 2018.

[85] M. Vishik, Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid, Part II, arXiv e-prints, May 2018.

[86] Višik, M.I.; Ljusternik, L.A. Regular degeneration and boundary layer for linear differential equations with small parameter, Transl. Am. Math. Soc., Volume 2 (1962) no. 20, pp. 239–364 | MR | Zbl

[87] Wang, Xiaoming A Kato type theorem on zero viscosity limit of Navier–Stokes flows, Indiana Univ. Math. J., Volume 50 (2001) no. Special Issue, pp. 223–241 (dedicated to Professors Ciprian Foias and Roger Temam, Bloomington, IN, 2000) | MR | Zbl

[88] Xiao, Yuelong; Xin, Zhouping On the vanishing viscosity limit for the 3D Navier–Stokes equations with a slip boundary condition, Commun. Pure Appl. Math., Volume 60 (2007) no. 7, pp. 1027–1055 | MR | Zbl

[89] Yudovich, V.I. Non-stationary flows of an ideal incompressible fluid, Ž. Vyčisl. Mat. Mat. Fiz., Volume 3 (1963), pp. 1032–1066 (in Russian) | MR | Zbl

Cité par Sources :