Regularity of interfaces for a Pucci type segregation problem
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 4, pp. 939-975.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We show the existence of a Lipschitz viscosity solution u in Ω to a system of fully nonlinear equations involving Pucci-type operators. We study the regularity of the interface {u>0}Ω and we show that the viscosity inequalities of the system imply, in the weak sense, the free boundary condition uν++=uν, and hence u is a solution to a two-phase free boundary problem. We show that we can apply the classical method of sup-convolutions developed by the first author in [5, 6], and generalized by Wang [20, 21] and Feldman [11] to fully nonlinear operators, to conclude that the regular points in {u>0}Ω form an open set of class C1,α. A novelty in our problem is that we have different operators, F+ and F, on each side of the free boundary. In the particular case when these operators are the Pucci's extremal operators M+ and M, our results provide an alternative approach to obtain the stationary limit of a segregation model of populations with nonlinear diffusion in [19].

DOI : 10.1016/j.anihpc.2018.11.002
Classification : 35J60, 35R35, 35B65, 35Q92
Mots-clés : Fully nonlinear elliptic systems, Pucci operators, Regularity for viscosity solutions, Segregation of populations, Regularity of the free boundary
Caffarelli, L. 1 ; Patrizi, S. 1 ; Quitalo, V. 2 ; Torres, M. 3

1 The University of Texas at Austin, Department of Mathematics – RLM 8.100, 2515 Speedway – Stop C1200, Austin, TX 78712-1202, United States of America
2 CMUC, Department of Mathematics, University of Coimbra, 3001-501 Coimbra, Portugal
3 Purdue University, Department of Mathematics, 150 N. University Street, West Lafayette, IN 47907-2067, United States of America
@article{AIHPC_2019__36_4_939_0,
     author = {Caffarelli, L. and Patrizi, S. and Quitalo, V. and Torres, M.},
     title = {Regularity of interfaces for a {Pucci} type segregation problem},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {939--975},
     publisher = {Elsevier},
     volume = {36},
     number = {4},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.11.002},
     mrnumber = {3955108},
     zbl = {1432.35085},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.11.002/}
}
TY  - JOUR
AU  - Caffarelli, L.
AU  - Patrizi, S.
AU  - Quitalo, V.
AU  - Torres, M.
TI  - Regularity of interfaces for a Pucci type segregation problem
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 939
EP  - 975
VL  - 36
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.11.002/
DO  - 10.1016/j.anihpc.2018.11.002
LA  - en
ID  - AIHPC_2019__36_4_939_0
ER  - 
%0 Journal Article
%A Caffarelli, L.
%A Patrizi, S.
%A Quitalo, V.
%A Torres, M.
%T Regularity of interfaces for a Pucci type segregation problem
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 939-975
%V 36
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.11.002/
%R 10.1016/j.anihpc.2018.11.002
%G en
%F AIHPC_2019__36_4_939_0
Caffarelli, L.; Patrizi, S.; Quitalo, V.; Torres, M. Regularity of interfaces for a Pucci type segregation problem. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 4, pp. 939-975. doi : 10.1016/j.anihpc.2018.11.002. http://www.numdam.org/articles/10.1016/j.anihpc.2018.11.002/

[1] Argiolas, R.; Ferrari, F. Flat free boundaries regularity in two-phase problems for a class of fully nonlinear elliptic operators with variable coefficients, Interfaces Free Bound., Volume 11 (2009) no. 2 | DOI | MR | Zbl

[2] Caffarelli, L.; Cabré, X. Fully Nonlinear Elliptic Equations, vol. 43, American Mathematical Society, 1995 | MR | Zbl

[3] Caffarelli, L.; Salsa, S. A Geometric Approach to Free Boundary Problems, vol. 68, American Mathematical Society, Providence, RI, 2005 | MR | Zbl

[4] Caffarelli, Luis A. A harnack inequality approach to the regularity of free boundaries, Commun. Pure Appl. Math., Volume 39 (1986) no. S1 | MR | Zbl

[5] Caffarelli, Luis A. A harnack inequality approach to the regularity of free boundaries. part i: Lipschitz free boundaries are C1,α , Rev. Mat. Iberoam., Volume 3 (1987) no. 2, pp. 139–162 | MR | Zbl

[6] Caffarelli, Luis A. A harnack inequality approach to the regularity of free boundaries part ii: Flat free boundaries are lipschitz, Commun. Pure Appl. Math., Volume 42 (1989) no. 1, pp. 55–78 | MR | Zbl

[7] Gui-Qiang Chen, Giovanni Comi, Monica Torres, The Gauss–Green formula for DMp-fields on open sets, preprint, 2018.

[8] Chen, Gui-Qiang; Torres, Monica; Ziemer, William Gauss–Green theorem for weakly differentiable vector fields, sets of finite perimeter, and balance laws, Commun. Pure Appl. Math., Volume LVII (2009) | MR | Zbl

[9] Crandall, Michael G.; Ishii, Hitoshi; Lions, Pierre-Louis User's guide to viscosity solutions of second order partial differential equations, Bull. Am. Math. Soc., Volume 27 (1992) no. 1, pp. 1–67 | MR | Zbl

[10] De Silva, D.; Ferrari, F.; Salsa, S. Free boundary regularity for fully nonlinear non-homogeneous two-phase problems, J. Math. Pures Appl. (9), Volume 103 (2015) no. 3, pp. 658–694 | DOI | MR | Zbl

[11] Feldman, M. Regularity of lipschitz free boundaries in two-phase problems for fully nonlinear elliptic equations, Indiana Univ. Math. J., Volume 50 (2001), pp. 1171–1200 | DOI | MR | Zbl

[12] Gilbarg, D.; Trudinger, N.S. Elliptic Partial Differential Equations of Second Order, vol. 224, Springer-Verlag, 2001 | DOI | MR | Zbl

[13] Han, Q.; Lin, F-H. Elliptic Partial Differential Equations, vol. 1, American Mathematical Soc., 2011 | Zbl

[14] Ishii, H.; Lions, P.-L. Viscosity solutions of fully nonlinear second-order elliptic partial differential equations, J. Differ. Equ., Volume 83 (1990) no. 1, pp. 26–78 | DOI | MR | Zbl

[15] Jiang, H.; Lin, F-H. Zero set of sobolev functions with negative power of integrability, Chin. Ann. Math., Volume 25 (2004) no. 01, pp. 65–72 | DOI | MR | Zbl

[16] Krylov, Nikolaj Vladimirovič Controlled Diffusion Processes, vol. 14, Springer Science & Business Media, 2008 | MR

[17] Ma, F.; Wang, L. Boundary first order derivative estimates for fully nonlinear elliptic equations, J. Differ. Equ., Volume 252 (2012) no. 2, pp. 988–1002 | MR | Zbl

[18] Petrosyan, A.; Shahgholian, H.; Uraltseva, N. Regularity of Free Boundaries in Obstacle-Type Problems, vol. 136, American Mathematical Society, Providence (RI), 2012 | DOI | MR | Zbl

[19] Quitalo, V. A free boundary problem arising from segregation of populations with high competition, Arch. Ration. Mech. Anal., Volume 210 (2013) no. 3, pp. 857–908 | DOI | MR | Zbl

[20] Wang, P-Y. Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order 1. Lipschitz free boundaries are C1,α , Commun. Pure Appl. Math., Volume 53 (2000) no. 7, pp. 799–810 | MR | Zbl

[21] Wang, P-Y. Regularity of free boundaries of two-phase problems for fully nonlinear elliptic equations of second order. ii. Flat free boundaries are Lipschitz, Commun. Partial Differ. Equ., Volume 27 (2002) no. 7–8, pp. 1497–1514 | MR | Zbl

[22] Wang, P-Y. Existence of solutions of two-phase free boundary problems for fully nonlinear elliptic equations of second order, J. Geom. Anal., Volume 13 (2003) no. 4, pp. 715–738 | MR | Zbl

Cité par Sources :