Sharp trace Gagliardo–Nirenberg–Sobolev inequalities for convex cones, and convex domains
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 861-885.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We find a new sharp trace Gagliardo–Nirenberg–Sobolev inequality on convex cones, as well as a sharp weighted trace Sobolev inequality on epigraphs of convex functions. This is done by using a generalized Borell–Brascamp–Lieb inequality, coming from the Brunn–Minkowski theory.

DOI : 10.1016/j.anihpc.2018.11.001
Mots-clés : Sobolev inequality, Gagliardo–Nirenberg–Sobolev inequality, Hamilton–Jacobi equation
@article{AIHPC_2019__36_3_861_0,
     author = {Zugmeyer, Simon},
     title = {Sharp trace {Gagliardo{\textendash}Nirenberg{\textendash}Sobolev} inequalities for convex cones, and convex domains},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {861--885},
     publisher = {Elsevier},
     volume = {36},
     number = {3},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.11.001},
     mrnumber = {3926525},
     zbl = {1409.26011},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.11.001/}
}
TY  - JOUR
AU  - Zugmeyer, Simon
TI  - Sharp trace Gagliardo–Nirenberg–Sobolev inequalities for convex cones, and convex domains
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 861
EP  - 885
VL  - 36
IS  - 3
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.11.001/
DO  - 10.1016/j.anihpc.2018.11.001
LA  - en
ID  - AIHPC_2019__36_3_861_0
ER  - 
%0 Journal Article
%A Zugmeyer, Simon
%T Sharp trace Gagliardo–Nirenberg–Sobolev inequalities for convex cones, and convex domains
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 861-885
%V 36
%N 3
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.11.001/
%R 10.1016/j.anihpc.2018.11.001
%G en
%F AIHPC_2019__36_3_861_0
Zugmeyer, Simon. Sharp trace Gagliardo–Nirenberg–Sobolev inequalities for convex cones, and convex domains. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 861-885. doi : 10.1016/j.anihpc.2018.11.001. http://www.numdam.org/articles/10.1016/j.anihpc.2018.11.001/

[1] Aubin, T. Problèmes isopérimétriques et espaces de Sobolev, J. Differ. Geom., Volume 11 (1976), pp. 573–598 | DOI | MR | Zbl

[2] Bobkov, S.; Ledoux, M. From Brunn–Minkowski to sharp Sobolev inequalities, Ann. Mat. Pura Appl., Volume 187 (2008), pp. 369–384 | DOI | MR | Zbl

[3] Bolley, F.; Cordero-Erausquin, D.; Fujita, Y.; Gentil, I.; Guillin, A. New sharp Gagliardo–Nirenberg–Sobolev inequalities and an improved Borell–Brascamp–Lieb inequality, 2017 (to appear in the IMRN) | arXiv | MR

[4] Borell, C. Convex set functions in d -space, Period. Math. Hung., Volume 6 (1975) no. 2, pp. 111–136 | DOI | MR | Zbl

[5] Brascamp, H.J.; Lieb, E.H. On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Funct. Anal., Volume 22 (1976) no. 4, pp. 366–389 | DOI | MR | Zbl

[6] Brézis, H. Analyse fonctionnelle, Dunod, 1999 | Zbl

[7] Cordero-Erausquin, D.; Nazaret, B.; Villani, C. A mass-transportation approach to sharp Sobolev and Gagliardo–Nirenberg inequalities, Adv. Math., Volume 182 (2004) no. 2, pp. 307–332 | DOI | MR | Zbl

[8] del Pino, M.; Dolbeault, J. Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl., Volume 81 (2002), pp. 847–875 | DOI | MR | Zbl

[9] Evans, L.C. Partial Differential Equations, Grad. Stud. Math., vol. 19, American Mathematical Society, 1998 | MR | Zbl

[10] Nazaret, B. Best constant in Sobolev trace inequalities on the half-space, Nonlinear Anal., Volume 65 (2006), pp. 1977–1985 | DOI | MR | Zbl

[11] Osserman, R. The isoperimetric inequality, Bull. Am. Math. Soc., Volume 84 (1978) no. 6, pp. 1182–1238 | DOI | MR | Zbl

[12] Schneider, R. Convex Bodies: the Brunn–Minkowski Theory, Encycl. Math. Appl., vol. 151, Cambridge University Press, Cambridge, 2014 | MR | Zbl

[13] Strömberg, T. The operation of infimal convolution, Diss. Math. (1996) | MR | Zbl

[14] Talenti, G. Best constant in Sobolev inequality, Ann. Mat. Pura Appl., Volume 110 (1976), pp. 353–372 | DOI | MR | Zbl

[15] Villani, C. Optimal Transport, Old and New, Grundlehren Math. Wiss., vol. 338, Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl

Cité par Sources :