We find a new sharp trace Gagliardo–Nirenberg–Sobolev inequality on convex cones, as well as a sharp weighted trace Sobolev inequality on epigraphs of convex functions. This is done by using a generalized Borell–Brascamp–Lieb inequality, coming from the Brunn–Minkowski theory.
@article{AIHPC_2019__36_3_861_0, author = {Zugmeyer, Simon}, title = {Sharp trace {Gagliardo{\textendash}Nirenberg{\textendash}Sobolev} inequalities for convex cones, and convex domains}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {861--885}, publisher = {Elsevier}, volume = {36}, number = {3}, year = {2019}, doi = {10.1016/j.anihpc.2018.11.001}, mrnumber = {3926525}, zbl = {1409.26011}, language = {en}, url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.11.001/} }
TY - JOUR AU - Zugmeyer, Simon TI - Sharp trace Gagliardo–Nirenberg–Sobolev inequalities for convex cones, and convex domains JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 861 EP - 885 VL - 36 IS - 3 PB - Elsevier UR - http://www.numdam.org/articles/10.1016/j.anihpc.2018.11.001/ DO - 10.1016/j.anihpc.2018.11.001 LA - en ID - AIHPC_2019__36_3_861_0 ER -
%0 Journal Article %A Zugmeyer, Simon %T Sharp trace Gagliardo–Nirenberg–Sobolev inequalities for convex cones, and convex domains %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 861-885 %V 36 %N 3 %I Elsevier %U http://www.numdam.org/articles/10.1016/j.anihpc.2018.11.001/ %R 10.1016/j.anihpc.2018.11.001 %G en %F AIHPC_2019__36_3_861_0
Zugmeyer, Simon. Sharp trace Gagliardo–Nirenberg–Sobolev inequalities for convex cones, and convex domains. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 3, pp. 861-885. doi : 10.1016/j.anihpc.2018.11.001. http://www.numdam.org/articles/10.1016/j.anihpc.2018.11.001/
[1] Problèmes isopérimétriques et espaces de Sobolev, J. Differ. Geom., Volume 11 (1976), pp. 573–598 | DOI | MR | Zbl
[2] From Brunn–Minkowski to sharp Sobolev inequalities, Ann. Mat. Pura Appl., Volume 187 (2008), pp. 369–384 | DOI | MR | Zbl
[3] New sharp Gagliardo–Nirenberg–Sobolev inequalities and an improved Borell–Brascamp–Lieb inequality, 2017 (to appear in the IMRN) | arXiv | MR
[4] Convex set functions in -space, Period. Math. Hung., Volume 6 (1975) no. 2, pp. 111–136 | DOI | MR | Zbl
[5] On extensions of the Brunn–Minkowski and Prékopa–Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Funct. Anal., Volume 22 (1976) no. 4, pp. 366–389 | DOI | MR | Zbl
[6] Analyse fonctionnelle, Dunod, 1999 | Zbl
[7] A mass-transportation approach to sharp Sobolev and Gagliardo–Nirenberg inequalities, Adv. Math., Volume 182 (2004) no. 2, pp. 307–332 | DOI | MR | Zbl
[8] Best constants for Gagliardo–Nirenberg inequalities and applications to nonlinear diffusions, J. Math. Pures Appl., Volume 81 (2002), pp. 847–875 | DOI | MR | Zbl
[9] Partial Differential Equations, Grad. Stud. Math., vol. 19, American Mathematical Society, 1998 | MR | Zbl
[10] Best constant in Sobolev trace inequalities on the half-space, Nonlinear Anal., Volume 65 (2006), pp. 1977–1985 | DOI | MR | Zbl
[11] The isoperimetric inequality, Bull. Am. Math. Soc., Volume 84 (1978) no. 6, pp. 1182–1238 | DOI | MR | Zbl
[12] Convex Bodies: the Brunn–Minkowski Theory, Encycl. Math. Appl., vol. 151, Cambridge University Press, Cambridge, 2014 | MR | Zbl
[13] The operation of infimal convolution, Diss. Math. (1996) | MR | Zbl
[14] Best constant in Sobolev inequality, Ann. Mat. Pura Appl., Volume 110 (1976), pp. 353–372 | DOI | MR | Zbl
[15] Optimal Transport, Old and New, Grundlehren Math. Wiss., vol. 338, Springer-Verlag, Berlin, 2009 | DOI | MR | Zbl
Cité par Sources :