Fluctuations of N -particle quantum dynamics around the nonlinear Schrödinger equation
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1201-1235.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

We consider a system of N bosons interacting through a singular two-body potential scaling with N and having the form N3β1V(Nβx), for an arbitrary parameter β(0,1). We provide a norm-approximation for the many-body evolution of initial data exhibiting Bose–Einstein condensation in terms of a cubic nonlinear Schrödinger equation for the condensate wave function and of a unitary Fock space evolution with a generator quadratic in creation and annihilation operators for the fluctuations.

DOI : 10.1016/j.anihpc.2018.10.007
Mots-clés : Many-body quantum dynamics, Bogoliubov approximation, Nonlinear Schrödinger equation, Gross–Pitaevskii equation
Brennecke, Christian 1 ; Nam, Phan Thành 2 ; Napiórkowski, Marcin 3 ; Schlein, Benjamin 1

1 Institute of Mathematics, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
2 Department of Mathematics, LMU Munich, Theresienstrasse 39, 80333 Munich, Germany
3 Department of Mathematical Methods in Physics, Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland
@article{AIHPC_2019__36_5_1201_0,
     author = {Brennecke, Christian and Nam, Phan Th\`anh and Napi\'orkowski, Marcin and Schlein, Benjamin},
     title = {Fluctuations of $N$-particle quantum dynamics around the nonlinear {Schr\"odinger} equation},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {1201--1235},
     publisher = {Elsevier},
     volume = {36},
     number = {5},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.10.007},
     mrnumber = {3985542},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.007/}
}
TY  - JOUR
AU  - Brennecke, Christian
AU  - Nam, Phan Thành
AU  - Napiórkowski, Marcin
AU  - Schlein, Benjamin
TI  - Fluctuations of $N$-particle quantum dynamics around the nonlinear Schrödinger equation
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 1201
EP  - 1235
VL  - 36
IS  - 5
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.007/
DO  - 10.1016/j.anihpc.2018.10.007
LA  - en
ID  - AIHPC_2019__36_5_1201_0
ER  - 
%0 Journal Article
%A Brennecke, Christian
%A Nam, Phan Thành
%A Napiórkowski, Marcin
%A Schlein, Benjamin
%T Fluctuations of $N$-particle quantum dynamics around the nonlinear Schrödinger equation
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 1201-1235
%V 36
%N 5
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.007/
%R 10.1016/j.anihpc.2018.10.007
%G en
%F AIHPC_2019__36_5_1201_0
Brennecke, Christian; Nam, Phan Thành; Napiórkowski, Marcin; Schlein, Benjamin. Fluctuations of $N$-particle quantum dynamics around the nonlinear Schrödinger equation. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 5, pp. 1201-1235. doi : 10.1016/j.anihpc.2018.10.007. http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.007/

[1] Adami, R.; Golse, F.; Teta, A. Rigorous derivation of the cubic NLS in dimension one, J. Stat. Phys., Volume 127 (2007), pp. 1193–1220 | DOI | MR | Zbl

[2] Ammari, Z.; Falconi, M.; Pawilowski, B. On the rate of convergence for the mean-field approximation of many-body quantum dynamics, Commun. Math. Sci., Volume 14 (2016) no. 5, pp. 1417–1442 | DOI | MR

[3] Anapolitanos, I.; Hott, M. A simple proof of convergence to the Hartree dynamics in Sobolev trace norms, J. Math. Phys., Volume 57 (2016) | DOI | MR

[4] Ammari, Z.; Nier, F. Mean-field limit for bosons and propagation of Wigner measures, J. Math. Phys., Volume 50 (2009) | DOI | MR | Zbl

[5] Boccato, C.; Cenatiempo, S.; Schlein, B. Quantum many-body fluctuations around nonlinear Schrödinger dynamics, Ann. Henri Poincaré, Volume 18 (2017), pp. 113–191 | DOI | MR

[6] Bardos, C.; Golse, F.; Mauser, N.J. Weak coupling limit of the N -particle Schrödinger equation, Methods Appl. Anal., Volume 2 (2000), pp. 275–293 | MR | Zbl

[7] Arous, G. Ben; Kirkpatrick, K.; Schlein, B. A central limit theorem in many-body quantum dynamics, Commun. Math. Phys., Volume 321 (2013), pp. 371–417 | MR | Zbl

[8] Benedikter, N.; de Oliveira, G.; Schlein, B. Quantitative derivation of the Gross–Pitaevskii equation, Commun. Pure Appl. Math., Volume 68 (2015) no. 8, pp. 1399–1482 | DOI | MR

[9] Boccato, C.; Brennecke, C.; Cenatiempo, S.; Schlein, B. Complete Bose–Einstein condensation in the Gross–Pitaevskii regime, Commun. Math. Phys., Volume 359 (2018) no. 3, pp. 975–1026 | DOI | MR

[10] Boccato, C.; Brennecke, C.; Cenatiempo, S.; Schlein, B. The excitation spectrum of Bose gases interacting through singular potentials (preprint) | arXiv | MR

[11] Brennecke, C.; Schlein, B. Gross–Pitaevskii dynamics for Bose–Einstein condensates (preprint) | arXiv | MR

[12] Buchholz, S.; Saffirio, C.; Schlein, B. Multivariate central limit theorem in quantum dynamics, J. Stat. Phys., Volume 154 (2014), pp. 113–152 | DOI | MR | Zbl

[13] Chen, X.; Holmer, J. Focusing quantum many-body dynamics: the rigorous derivation of the 1D focusing cubic nonlinear Schrödinger equation, Arch. Ration. Mech. Anal., Volume 221 (2016) no. 2, pp. 631–676 | DOI | MR

[14] Chen, X.; Holmer, J. Correlation structures, many-body scattering processes and the derivation of the Gross–Pitaevskii hierarchy, Int. Math. Res. Not. (2016) no. 10, pp. 3051–3110 | DOI | MR

[15] Dereziński, J.; Napiórkowski, M. Excitation spectrum of interacting bosons in the mean-field infinite-volume limit, Ann. Henri Poincaré, Volume 15 (2014), pp. 2409–2439 | DOI | MR | Zbl

[16] Elgart, A.; Schlein, B. Mean-field dynamics for boson stars, Commun. Pure Appl. Math., Volume 60 (2007) no. 4, pp. 500–545 | DOI | MR | Zbl

[17] Erdős, L.; Schlein, B.; Yau, H.-T. Derivation of the cubic nonlinear Schrödinger equation from quantum dynamics of many-body systems, Invent. Math., Volume 167 (2006), pp. 515–614 | MR | Zbl

[18] Erdős, L.; Schlein, B.; Yau, H.-T. Derivation of the Gross–Pitaevskii equation for the dynamics of Bose–Einstein condensate, Ann. Math. (2), Volume 172 (2010) no. 1, pp. 291–370 | DOI | MR | Zbl

[19] Erdős, L.; Schlein, B.; Yau, H.-T. Rigorous derivation of the Gross–Pitaevskii equation with a large interaction potential, J. Am. Math. Soc., Volume 22 (2009), pp. 1099–1156 | DOI | MR | Zbl

[20] Erdős, L.; Yau, H.-T. Derivation of the nonlinear Schrödinger equation from a many-body Coulomb system, Adv. Theor. Math. Phys., Volume 5 (2001) no. 6, pp. 1169–1205 | DOI | MR | Zbl

[21] Fröhlich, J.; Knowles, A.; Pizzo, A. Atomism and quantization, J. Phys. A, Math. Theor., Volume 40 (2007), pp. 3033–3045 | DOI | MR | Zbl

[22] Fröhlich, J.; Knowles, A.; Schwarz, S. On the mean-field limit of bosons with Coulomb two-body interaction, Commun. Math. Phys., Volume 288 (2009) no. 3, pp. 1023–1059 | DOI | MR | Zbl

[23] Ginibre, J.; Velo, G. The classical field limit of scattering theory for nonrelativistic many-boson systems. I and II, Commun. Math. Phys., Volume 66 (1979) no. 1, pp. 37–76 (and, 68, 1, 1979, 45–68) | DOI | MR | Zbl

[24] Grech, P.; Seiringer, R. The excitation spectrum for weakly interacting bosons in a trap, Commun. Math. Phys., Volume 322 (2013), pp. 559–591 | DOI | MR | Zbl

[25] Grillakis, M.; Machedon, M. Pair excitations and the mean field approximation of interacting bosons, I, Commun. Math. Phys., Volume 342 (2013), pp. 601–636 | MR | Zbl

[26] Grillakis, M.; Machedon, M. Pair excitations and the mean field approximation of interacting bosons, II, Commun. Partial Differ. Equ., Volume 42 (2017), pp. 24–67 | DOI | MR

[27] Grillakis, M.; Machedon, M.; Margetis, D. Second-order corrections to mean-field evolution of weakly interacting bosons. I, Commun. Math. Phys., Volume 294 (2010) no. 1, pp. 273–301 | DOI | MR | Zbl

[28] Grillakis, M.; Machedon, M.; Margetis, D. Second-order corrections to mean-field evolution of weakly interacting bosons. II, Adv. Math., Volume 228 (2011) no. 3, pp. 1788–1815 | DOI | MR | Zbl

[29] Hepp, K. The classical limit for quantum mechanical correlation functions, Commun. Math. Phys., Volume 35 (1974), pp. 265–277 | DOI | MR

[30] Kirkpatrick, K.; Schlein, B.; Staffilani, G. Derivation of the two dimensional nonlinear Schrödinger equation from many-body quantum dynamics, Am. J. Math., Volume 133 (2011) no. 1, pp. 91–130 | DOI | MR | Zbl

[31] Knowles, A.; Pickl, P. Mean-field dynamics: singular potentials and rate of convergence, Commun. Math. Phys., Volume 298 (2010) no. 1, pp. 101–138 | DOI | MR | Zbl

[32] Kuz, E. Exact evolution versus mean field with second-order correction for bosons interacting via short-range two-body potential, Differ. Integral Equ., Volume 30 (2017) no. 7/8, pp. 587–630 | MR

[33] Lewin, M.; Nam, P.T.; Schlein, B. Fluctuations around Hartree states in the mean-field regime, Am. J. Math., Volume 137 (2015), pp. 1613–1650 | DOI | MR

[34] Lewin, M.; Nam, P.T.; Serfaty, S.; Solovej, J.P. Bogoliubov spectrum of interacting Bose gases, Commun. Pure Appl. Math., Volume 68 (2015) no. 3, pp. 413–471 | DOI | MR | Zbl

[35] Lieb, E.H.; Seiringer, R. Proof of Bose–Einstein condensation for dilute trapped gases, Phys. Rev. Lett., Volume 88 (2002)

[36] Mitrouskas, D.; Petrat, S.; Pickl, P. Bogoliubov corrections and trace norm convergence for the Hartree dynamics (preprint) | arXiv | MR

[37] Nam, P.T.; Napiórkowski, M. Bogoliubov correction to the mean-field dynamics of interacting bosons, Adv. Theor. Math. Phys., Volume 21 (2017), pp. 683–738 | MR

[38] Nam, P.T.; Napiórkowski, M. A note on the validity of Bogoliubov correction to mean-field dynamics, J. Math. Pures Appl., Volume 108 (2017) no. 5, pp. 662–688 | MR

[39] Nam, P.T.; Napiórkowski, M. Norm approximation for many-body quantum dynamics: focusing cases in low dimensions (preprint) | arXiv | MR

[40] Nam, P.T.; Napiórkowski, M.; Solovej, J.P. Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations, J. Funct. Anal., Volume 270 (2016) no. 11, pp. 4340–4368 | MR

[41] Nam, P.T.; Rougerie, N.; Seiringer, R. Ground states of large bosonic systems: the Gross–Pitaevskii limit revisited, Anal. PDE, Volume 9 (2016) no. 2, pp. 459–485 | MR

[42] Nam, P.T.; Seiringer, R. Collective excitations of Bose gases in the mean-field regime, Arch. Ration. Mech. Anal., Volume 215 (2015), pp. 381–417 | MR | Zbl

[43] Pickl, P. Derivation of the time dependent Gross Pitaevskii equation with external fields, Rev. Math. Phys., Volume 27 (2015) | DOI | MR

[44] Pizzo, A. Bose particles in a box I. A convergent expansion of the ground state of a three-modes Bogoliubov Hamiltonian (preprint) | arXiv

[45] Rodnianski, I.; Schlein, B. Quantum fluctuations and rate of convergence towards mean-field dynamics, Commun. Math. Phys., Volume 291 (2009) no. 1, pp. 31–61 | DOI | MR | Zbl

[46] Seiringer, R. The excitation spectrum for weakly interacting bosons, Commun. Math. Phys., Volume 306 (2011), pp. 565–578 | DOI | MR | Zbl

[47] Spohn, H. Kinetic equations from Hamiltonian dynamics: Markovian limits, Rev. Mod. Phys., Volume 52 (1980) no. 3, pp. 569–615 | DOI | MR

Cité par Sources :