Nonlinear stability of 2-solitons of the sine-Gordon equation in the energy space
Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 4, pp. 977-1034.
Le texte intégral des articles récents est réservé aux abonnés de la revue. Consultez l'article sur le site de la revue.

In this article we prove that 2-soliton solutions of the sine-Gordon equation (SG) are orbitally stable in the natural energy space of the problem H1×L2. The solutions that we study are the 2-kink, kink–antikink and breather of SG. In order to prove this result, we will use Bäcklund transformations implemented by the Implicit Function Theorem. These transformations will allow us to reduce the stability of the three solutions to the case of the vacuum solution, in the spirit of previous results by Alejo and the first author [3], which was done for the case of the scalar modified Korteweg–de Vries equation. However, we will see that SG presents several difficulties because of its vector valued character. Our results improve those in [5], and give the first rigorous proof of the nonlinear stability in the energy space of the SG 2-solitons.

DOI : 10.1016/j.anihpc.2018.10.005
Mots-clés : Sine-Gordon, Stability, Breathers, 2-kink, Kink–antikink, Modified KdV
Muñoz, Claudio 1 ; Palacios, José M. 2

1 CNRS and Departamento de Ingeniería Matemática and Centro de Modelamiento Matemático (UMI 2807 CNRS), Universidad de Chile, Casilla 170 Correo 3, Santiago, Chile
2 Departamento de Ingeniería Matemática DIM, Universidad de Chile, Chile
@article{AIHPC_2019__36_4_977_0,
     author = {Mu\~noz, Claudio and Palacios, Jos\'e M.},
     title = {Nonlinear stability of 2-solitons of the {sine-Gordon} equation in the energy space},
     journal = {Annales de l'I.H.P. Analyse non lin\'eaire},
     pages = {977--1034},
     publisher = {Elsevier},
     volume = {36},
     number = {4},
     year = {2019},
     doi = {10.1016/j.anihpc.2018.10.005},
     mrnumber = {3955109},
     language = {en},
     url = {http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.005/}
}
TY  - JOUR
AU  - Muñoz, Claudio
AU  - Palacios, José M.
TI  - Nonlinear stability of 2-solitons of the sine-Gordon equation in the energy space
JO  - Annales de l'I.H.P. Analyse non linéaire
PY  - 2019
SP  - 977
EP  - 1034
VL  - 36
IS  - 4
PB  - Elsevier
UR  - http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.005/
DO  - 10.1016/j.anihpc.2018.10.005
LA  - en
ID  - AIHPC_2019__36_4_977_0
ER  - 
%0 Journal Article
%A Muñoz, Claudio
%A Palacios, José M.
%T Nonlinear stability of 2-solitons of the sine-Gordon equation in the energy space
%J Annales de l'I.H.P. Analyse non linéaire
%D 2019
%P 977-1034
%V 36
%N 4
%I Elsevier
%U http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.005/
%R 10.1016/j.anihpc.2018.10.005
%G en
%F AIHPC_2019__36_4_977_0
Muñoz, Claudio; Palacios, José M. Nonlinear stability of 2-solitons of the sine-Gordon equation in the energy space. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 4, pp. 977-1034. doi : 10.1016/j.anihpc.2018.10.005. http://www.numdam.org/articles/10.1016/j.anihpc.2018.10.005/

[1] Alejo, M.A.; Muñoz, C. Nonlinear stability of mKdV breathers, Commun. Math. Phys., Volume 324 (2013) no. 1, pp. 233–262 | DOI | MR | Zbl

[2] Alejo, M.A.; Muñoz, C. On the nonlinear stability of mKdV breathers, J. Phys. A, Math. Theor., Volume 45 (2012) | DOI | MR | Zbl

[3] Alejo, M.A.; Muñoz, C. Dynamics of complex-valued modified KdV solitons with applications to the stability of breathers, Anal. PDE, Volume 8 (2015) no. 3, pp. 629–674 | DOI | MR

[4] Alejo, M.A.; Muñoz, C.; Palacios, J.M. On the variational structure of breather solutions II: periodic mKdV case, Electron. J. Differ. Equ., Volume 2017 (2017) no. 56, pp. 1–26 | MR

[5] Alejo, M.A.; Muñoz, C.; Palacios, J.M. On the variational structure of breather solutions I: sine-Gordon case, J. Math. Anal. Appl., Volume 453 (2017) no. 2, pp. 1111–1138 | DOI | MR

[6] Alejo, M.A.; Muñoz, C.; Vega, L. The Gardner equation and the L2-stability of the N-soliton solution of the Korteweg–de Vries equation, Trans. Am. Math. Soc., Volume 365 (2013) no. 1, pp. 195–212 | DOI | MR | Zbl

[7] Blank, C.; Chirilus-Bruckner, M.; Lescarret, V.; Schneider, G. Breather solutions in periodic media, Commun. Math. Phys., Volume 302 (2011) no. 3, pp. 815–841 | DOI | MR | Zbl

[8] Birnir, B.; McKean, H.P.; Weinstein, A. The rigidity of sine-Gordon breathers, Commun. Pure Appl. Math., Volume 47 (1994), pp. 1043–1051 | DOI | MR | Zbl

[9] Cen, J.; Correa, F.; Fring, A. Degenerate multi-solitons in the sine-Gordon equation | arXiv

[10] Coron, J.-M. Période minimale pour une corde vibrante de longueur infinie, C. R. Acad. Sci. Paris Sér., Volume 294 (18 Janvier 1982), pp. 127 | MR | Zbl

[11] A. de Laire, P. Gravejat, The sine-Gordon regime of the Landau–Lifshitz equation with a strong easy-plane anisotropy, preprint, 2017. | Numdam | MR | Zbl

[12] Denzler, J. Nonpersistence of breather families for the perturbed sine-Gordon equation, Commun. Math. Phys., Volume 158 (1993), pp. 397–430 | DOI | MR | Zbl

[13] Dauxois, T.; Peyrard, M. Physics of Solitons, Cambridge University Press, Cambridge, 2010 (xii+422 pp) | MR | Zbl

[14] Ercolani, N.; Forest, M.G.; McLaughlin, D.W. Modulational stability of two-phase sine-Gordon wave trains, Stud. Appl. Math., Volume 2 (1985), pp. 91–101 | MR | Zbl

[15] Henry, D.B.; Perez, J.F.; Wreszinski, W.F. Stability theory for solitary-wave solutions of scalar field equations, Commun. Math. Phys., Volume 85 (1982), pp. 351–361 | DOI | MR | Zbl

[16] Hoffman, A.; Wayne, C.E. Orbital stability of localized structures via Bäcklund transformations, Differ. Integral Equ., Volume 26 (2013) no. 3–4, pp. 303–320 | MR | Zbl

[17] Kapitula, T. On the stability of N -solitons in integrable systems, Nonlinearity, Volume 20 (2007), pp. 879–907 | DOI | MR | Zbl

[18] Kichenassamy Breather solutions of the nonlinear wave equation, Commun. Pure Appl. Math., Volume XLIV (1991), pp. 789–818 | MR | Zbl

[19] Kowalczyk, M.; Martel, Y.; Muñoz, C. Kink dynamics in the ϕ4 model: asymptotic stability for odd perturbations in the energy space, J. Am. Math. Soc., Volume 30 (2017), pp. 769–798 | MR

[20] Kowalczyk, M.; Martel, Y.; Muñoz, C. Nonexistence of small, odd breathers for a class of nonlinear wave equations, Lett. Math. Phys., Volume 107 (May 2017) no. 5, pp. 921–931 | DOI | MR

[21] Kruskal, M.D.; Segur, Harvey Nonexistence of small-amplitude breather solutions in ϕ4 theory, Phys. Rev. Lett., Volume 58 (1987) no. 8, pp. 747–750 | MR

[22] Lamb, G.L. Elements of Soliton Theory, Pure Appl. Math., Wiley, New York, 1980 | MR | Zbl

[23] Maddocks, J.H.; Sachs, R.L. On the stability of KdV multi-solitons, Commun. Pure Appl. Math., Volume 46 (1993), pp. 867–901 | DOI | MR | Zbl

[24] Martel, Y.; Merle, F.; Tsai, T.P. Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Commun. Math. Phys., Volume 231 (2002), pp. 347–373 | DOI | MR | Zbl

[25] Martel, Y.; Merle, F. Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal., Volume 157 (2001) no. 3, pp. 219–254 | DOI | MR | Zbl

[26] Martel, Y.; Merle, F. Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity, Volume 18 (2005), pp. 55–80 | DOI | MR | Zbl

[27] Merle, F.; Vega, L. L2 stability of solitons for KdV equation, Int. Math. Res. Not., Volume 13 (2003), pp. 735–753 | MR | Zbl

[28] Mizumachi, T.; Pelinovsky, D. Bäcklund transformation and L 2 -stability of NLS solitons, Int. Math. Res. Not. (2012) no. 9, pp. 2034–2067 | MR | Zbl

[29] Muñoz, C. The Gardner equation and the stability of the multi-kink solutions of the mKdV equation, Discrete Contin. Dyn. Syst., Volume 36 (2016) no. 7, pp. 3811–3843 | DOI | MR

[30] Muñoz, C. Stability of integrable and nonintegrable structures, Adv. Differ. Equ., Volume 19 (2014) no. 9/10, pp. 947–996 | MR | Zbl

[31] Muñoz, C. Instability in nonlinear Schrödinger breathers, Proyecciones, Volume 36 (2017) no. 4, pp. 653–683 (preprint) | arXiv | MR

[32] Neves, A.; Lopes, O. Orbital stability of double solitons for the Benjamin–Ono equation, Commun. Math. Phys., Volume 262 (2006), pp. 757–791 | DOI | MR | Zbl

[33] Pego, R.L.; Weinstein, M.I. Asymptotic stability of solitary waves, Commun. Math. Phys., Volume 164 (1994), pp. 305–349 | MR | Zbl

[34] Pelinovsky, D.; Shimabukuro, Y. Orbital stability of Dirac solitons, Lett. Math. Phys., Volume 104 (2014), pp. 21–41 | DOI | MR | Zbl

[35] Rodnianski, I.; Schlag, W.; Soffer, A. Asymptotic stability of N-soliton states of NLS (preprint) | arXiv

[36] Schuur, P.C. Asymptotic Analysis of Soliton Problems. An Inverse Scattering Approach, Lecture Notes in Mathematics, vol. 1232, Springer-Verlag, Berlin, 1986 (viii+180 pp) | MR | Zbl

[37] Shatah, Jalal; Struwe, Michael Geometric Wave Equations, Courant Lecture Notes in Mathematics, vol. 2, New York University, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence, RI, 1998 | MR | Zbl

[38] Soffer, A.; Weinstein, M.I. Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., Volume 136 (1999) no. 1, pp. 9–74 | DOI | MR | Zbl

[39] Vuillermot, P.-A. Nonexistence of spatially localized free vibrations for a class of nonlinear wave equations, Comment. Math. Helv., Volume 64 (1987), pp. 573–586 | MR | Zbl

Cité par Sources :