In this article we prove that 2-soliton solutions of the sine-Gordon equation (SG) are orbitally stable in the natural energy space of the problem
@article{AIHPC_2019__36_4_977_0, author = {Mu\~noz, Claudio and Palacios, Jos\'e M.}, title = {Nonlinear stability of 2-solitons of the {sine-Gordon} equation in the energy space}, journal = {Annales de l'I.H.P. Analyse non lin\'eaire}, pages = {977--1034}, publisher = {Elsevier}, volume = {36}, number = {4}, year = {2019}, doi = {10.1016/j.anihpc.2018.10.005}, mrnumber = {3955109}, language = {en}, url = {https://www.numdam.org/articles/10.1016/j.anihpc.2018.10.005/} }
TY - JOUR AU - Muñoz, Claudio AU - Palacios, José M. TI - Nonlinear stability of 2-solitons of the sine-Gordon equation in the energy space JO - Annales de l'I.H.P. Analyse non linéaire PY - 2019 SP - 977 EP - 1034 VL - 36 IS - 4 PB - Elsevier UR - https://www.numdam.org/articles/10.1016/j.anihpc.2018.10.005/ DO - 10.1016/j.anihpc.2018.10.005 LA - en ID - AIHPC_2019__36_4_977_0 ER -
%0 Journal Article %A Muñoz, Claudio %A Palacios, José M. %T Nonlinear stability of 2-solitons of the sine-Gordon equation in the energy space %J Annales de l'I.H.P. Analyse non linéaire %D 2019 %P 977-1034 %V 36 %N 4 %I Elsevier %U https://www.numdam.org/articles/10.1016/j.anihpc.2018.10.005/ %R 10.1016/j.anihpc.2018.10.005 %G en %F AIHPC_2019__36_4_977_0
Muñoz, Claudio; Palacios, José M. Nonlinear stability of 2-solitons of the sine-Gordon equation in the energy space. Annales de l'I.H.P. Analyse non linéaire, Tome 36 (2019) no. 4, pp. 977-1034. doi : 10.1016/j.anihpc.2018.10.005. https://www.numdam.org/articles/10.1016/j.anihpc.2018.10.005/
[1] Nonlinear stability of mKdV breathers, Commun. Math. Phys., Volume 324 (2013) no. 1, pp. 233–262 | DOI | MR | Zbl
[2] On the nonlinear stability of mKdV breathers, J. Phys. A, Math. Theor., Volume 45 (2012) | DOI | MR | Zbl
[3] Dynamics of complex-valued modified KdV solitons with applications to the stability of breathers, Anal. PDE, Volume 8 (2015) no. 3, pp. 629–674 | DOI | MR
[4] On the variational structure of breather solutions II: periodic mKdV case, Electron. J. Differ. Equ., Volume 2017 (2017) no. 56, pp. 1–26 | MR
[5] On the variational structure of breather solutions I: sine-Gordon case, J. Math. Anal. Appl., Volume 453 (2017) no. 2, pp. 1111–1138 | DOI | MR
[6] The Gardner equation and the
[7] Breather solutions in periodic media, Commun. Math. Phys., Volume 302 (2011) no. 3, pp. 815–841 | DOI | MR | Zbl
[8] The rigidity of sine-Gordon breathers, Commun. Pure Appl. Math., Volume 47 (1994), pp. 1043–1051 | DOI | MR | Zbl
[9] Degenerate multi-solitons in the sine-Gordon equation | arXiv
[10] Période minimale pour une corde vibrante de longueur infinie, C. R. Acad. Sci. Paris Sér., Volume 294 (18 Janvier 1982), pp. 127 | MR | Zbl
[11] A. de Laire, P. Gravejat, The sine-Gordon regime of the Landau–Lifshitz equation with a strong easy-plane anisotropy, preprint, 2017. | Numdam | MR | Zbl
[12] Nonpersistence of breather families for the perturbed sine-Gordon equation, Commun. Math. Phys., Volume 158 (1993), pp. 397–430 | DOI | MR | Zbl
[13] Physics of Solitons, Cambridge University Press, Cambridge, 2010 (xii+422 pp) | MR | Zbl
[14] Modulational stability of two-phase sine-Gordon wave trains, Stud. Appl. Math., Volume 2 (1985), pp. 91–101 | MR | Zbl
[15] Stability theory for solitary-wave solutions of scalar field equations, Commun. Math. Phys., Volume 85 (1982), pp. 351–361 | DOI | MR | Zbl
[16] Orbital stability of localized structures via Bäcklund transformations, Differ. Integral Equ., Volume 26 (2013) no. 3–4, pp. 303–320 | MR | Zbl
[17] On the stability of
[18] Breather solutions of the nonlinear wave equation, Commun. Pure Appl. Math., Volume XLIV (1991), pp. 789–818 | MR | Zbl
[19] Kink dynamics in the
[20] Nonexistence of small, odd breathers for a class of nonlinear wave equations, Lett. Math. Phys., Volume 107 (May 2017) no. 5, pp. 921–931 | DOI | MR
[21] Nonexistence of small-amplitude breather solutions in
[22] Elements of Soliton Theory, Pure Appl. Math., Wiley, New York, 1980 | MR | Zbl
[23] On the stability of KdV multi-solitons, Commun. Pure Appl. Math., Volume 46 (1993), pp. 867–901 | DOI | MR | Zbl
[24] Stability and asymptotic stability in the energy space of the sum of N solitons for subcritical gKdV equations, Commun. Math. Phys., Volume 231 (2002), pp. 347–373 | DOI | MR | Zbl
[25] Asymptotic stability of solitons for subcritical generalized KdV equations, Arch. Ration. Mech. Anal., Volume 157 (2001) no. 3, pp. 219–254 | DOI | MR | Zbl
[26] Asymptotic stability of solitons of the subcritical gKdV equations revisited, Nonlinearity, Volume 18 (2005), pp. 55–80 | DOI | MR | Zbl
[27]
[28] Bäcklund transformation and
[29] The Gardner equation and the stability of the multi-kink solutions of the mKdV equation, Discrete Contin. Dyn. Syst., Volume 36 (2016) no. 7, pp. 3811–3843 | DOI | MR
[30] Stability of integrable and nonintegrable structures, Adv. Differ. Equ., Volume 19 (2014) no. 9/10, pp. 947–996 | MR | Zbl
[31] Instability in nonlinear Schrödinger breathers, Proyecciones, Volume 36 (2017) no. 4, pp. 653–683 (preprint) | arXiv | MR
[32] Orbital stability of double solitons for the Benjamin–Ono equation, Commun. Math. Phys., Volume 262 (2006), pp. 757–791 | DOI | MR | Zbl
[33] Asymptotic stability of solitary waves, Commun. Math. Phys., Volume 164 (1994), pp. 305–349 | MR | Zbl
[34] Orbital stability of Dirac solitons, Lett. Math. Phys., Volume 104 (2014), pp. 21–41 | DOI | MR | Zbl
[35] Asymptotic stability of N-soliton states of NLS (preprint) | arXiv
[36] Asymptotic Analysis of Soliton Problems. An Inverse Scattering Approach, Lecture Notes in Mathematics, vol. 1232, Springer-Verlag, Berlin, 1986 (viii+180 pp) | MR | Zbl
[37] Geometric Wave Equations, Courant Lecture Notes in Mathematics, vol. 2, New York University, Courant Institute of Mathematical Sciences/American Mathematical Society, New York/Providence, RI, 1998 | MR | Zbl
[38] Resonances, radiation damping and instability in Hamiltonian nonlinear wave equations, Invent. Math., Volume 136 (1999) no. 1, pp. 9–74 | DOI | MR | Zbl
[39] Nonexistence of spatially localized free vibrations for a class of nonlinear wave equations, Comment. Math. Helv., Volume 64 (1987), pp. 573–586 | MR | Zbl
Cité par Sources :